Several recent studies with transcranial magnetic stimulation (TMS) have demonstrated changes in motor evoked potentials (MEPs) in human limb muscles following modulation of sensory afferent inputs, but little is known about the regulation of the human tongue motor control. To test the effect of local anesthesia (LA) of the lingual nerve and topical application of capsaicin stimulation on tongue MEPs. Fourteen volunteers participated (21-30 years) in two randomized sessions; before, during a nerve block of the lingual nerve or topical capsaicin application (30 microl 5%) on the tongue, and after anesthesia or pain had subsided. EMG electrodes were placed on the tongue and the first dorsal interosseous (FDI) muscle (control). EMG signals were amplified, filtered (20 Hz-1 kHz), and sampled at 4 kHz (Nicolet, USA). TMS were delivered with a figure-of-eight coil (Magstim 200, UK). Scalp sites at which EMG responses were evoked in the relaxed tongue or FDI at the lowest stimulus strength were determined, i.e., motor threshold (T). MEPs were assessed using stimulus-response curves in steps of 10% T. Eight stimuli were presented at each stimulus level. The proximal hypoglossal nerve was activated by TMS delivered over the parieto-occipital skull distal to the right ear. Eight stimuli were delivered at 50% of maximum stimulator output. ANOVAs were used to analyze latency and peak-to-peak amplitudes. Capsaicin evoked mild pain (2.8+/-0.5), and a strong burning sensation (6.2+/-0.4) on 0-10 visual analogue scales. MEP amplitudes in tongue and FDI were not influenced by capsaicin (P>0.44) but by stimulus strength (P<0.001). MEP latencies in tongue (8.9+/-0.2 ms) and FDI (22.4+/-0.4 ms) were not affected by capsaicin (P>0.19). Hypoglossal nerve stimulation evoked a short-latency (3.6+/-0.9 ms) response (mean amplitude 65+/-9 microV); but was unaffected by capsaicin (P>0.54). LA did not have any effect on FDI MEPs but was associated with a significant facilitation of tongue MEPs at T+50% and T+60% about 50 min after the nerve block in the recovery phase. Also in this condition, the direct motor responses evoked by hypoglossal nerve stimulation remained constant. No direct effect of a strong burning sensation could be shown on peripheral or central corticomotor pathways to the relaxed tongue musculature, however, LA of the lingual nerve (cranial nerve V) seems able to induce a delayed change in corticomotor control of tongue musculature (cranial nerve XII) possibly related to unmasking effects at the cortical level but not completely excluding excitability changes at the brain stem level.
We aimed at establishing a sensitive and robust assay for estimation of systemic complement activation at complement component C3 level in mouse and human plasma samples. In order to capture the activation products iC3b and C3dg in a specific and physiological relevant manner we utilized a construct consisting of the iC3b/C3dg-binding site of human complement receptor 2 (CR2) attached to an Fcpart of mouse IgG. This construct binds C3dg and iC3b from both mice and humans. We purified the CR2-IgG construct from mouse B myeloma cell line supernatants, J558L-CR2-IgG, by protein G affinity chromatography. The CR2-IgG construct was used for capturing C3 fragments in microtiter wells and an anti-mouse or an anti-human-C3 antibody was used for detection of bound C3 fragments. Initially we tested the specificity of the assays with the use of purified C3 fragments. Further, with the use of the CR2-based assay, we measured an up to threefold higher signal in activated mouse serum as compared to non-activated mouse serum, whereas activated serum from a C3 knockout mouse gave no signal. We tested in vivo generated samples from a mouse experiment; complement activation was induced by injecting cobra venom factor or heat aggregated IgG into C57bl6 mice, followed by withdrawal of EDTA blood samples at different time points and measurement of iC3b/C3dg. We observed a clear time-dependent distinction in signals between samples with expected high and low complement activation. Furthermore, with the use of the assay for human C3 fragments, we observed that patients with systemic lupus erythematosus (SLE) (n = 144) had significantly higher iC3b/C3dg levels as compared to healthy individuals (n = 144) (p < 0.0001). We present two functional immunoassays, that are able to measure systemic levels of the C3-activation products iC3b and C3dg in mice and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.