Purpose: It has been suggested that cysteine-rich secretory protein 3 (CRISP-3) and h-microseminoprotein (MSP) are associated with outcome in prostate cancer. We investigated whether these markers are related to biochemical recurrence and whether addition of the markers improves prediction of recurring disease. Experimental Design: Tissue microarrays of radical prostatectomy specimens were analyzed for CRISP-3 and MSP by immunohistochemistry. Associations between marker positivity and postprostatectomy biochemical recurrence [prostate-specific antigen (PSA) >0.2 ng/mL with a confirmatory level] were evaluated by univariate and multivariable Cox proportional hazards regression. Multivariable analyses controlled for preoperative PSA and pathologic stage and grade. Results: Among 945 patients, 224 had recurrence. Median follow-up for survivors was 6.0 years. Patients positive for CRISP-3 had smaller recurrence-free probabilities, whereas MSP-positive patients had larger recurrence-free probabilities. On univariate analysis, the hazard ratio for patients positive versus negative for CRISP-3 was1.53 (P = 0.010) and for MSP was 0.63 (P = 0.004). On multivariable analysis, both CRISP-3 (P = 0.007) and MSP (P = 0.002) were associated with recurrence. The hazard ratio among CRISP-3^positive/MSP-negative patients compared with CRISP-3^negative/MSP-positive patients was 2.38. Adding CRISP-3 to a base model that included PSA and pathologic stage and grade did not enhance the prediction of recurrence, but adding MSP increased the concordance index minimally from 0.778 to 0.781. Conclusion:We report evidence that CRISP-3 and MSP are independent predictors of recurrence after radical prostatectomy for localized prostate cancer. However, addition of the markers does not importantly improve the performance of existing predictive models. Further research should aim to elucidate the functions of CRISP-3 and MSP in prostate cancer cells.
Mammalian members of the cysteine-rich secretory protein (CRISP) family are expressed predominantly in the male reproductive tract and are implicated in the process of reproduction from spermiogenesis, posttesticular sperm maturation, and capacitation to oocyte-sperm fusion, and possibly also penetration of the zona pellucida. Rodents express only 2 CRISPs (CRISP-1 and CRISP-2) in their male reproductive system, whereas humans and horses express an additional third member named CRISP-3. We have previously demonstrated that this protein is present in human seminal plasma as well as in other exocrine secretions, in blood plasma, and in neutrophilic granulocytes. To characterize the protein in seminal plasma and localize the production of CRISP-3 in the human male reproductive tract, we performed immunoblotting and enzyme-linked immunosorbent assay measurements of seminal plasma and immunohistochemistry and in situ hybridization of tissue specimens. We were able to show that human CRISP-3 is a quantitatively minor seminal plasma protein not associated with prostasomes. Furthermore, CRISP-3 expression was found in the secretory epithelium throughout the male genital tract, with particularly high expression in the cauda epididymis and ampulla vas deferens. Examination of seminal plasma from vasectomized males indicates that organs downstream of the epididymis are probably the major sources of seminal plasma CRISP-3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.