Traffic classification is essential in network management for operations ranging from capacity planning, performance monitoring, volumetry, and resource provisioning, to anomaly detection and security. Recently, it has become increasingly challenging with the widespread adoption of encryption in the Internet, e.g., as a de-facto in HTTP/2 and QUIC protocols. In the current state of encrypted traffic classification using Deep Learning (DL), we identify fundamental issues in the way it is typically approached. For instance, although complex DL models with millions of parameters are being used, these models implement a relatively simple logic based on certain header fields of the TLS handshake, limiting model robustness to future versions of encrypted protocols. Furthermore, encrypted traffic is often treated as any other raw input for DL, while crucial domain-specific considerations exist that are commonly ignored. In this paper, we design a novel feature engineering approach that generalizes well for encrypted web protocols, and develop a neural network architecture based on Stacked Long Short-Term Memory (LSTM) layers and Convolutional Neural Networks (CNN) that works very well with our feature design. We evaluate our approach on a real-world traffic dataset from a major ISP and Mobile Network Operator. We achieve an accuracy of 95% in service classification with less raw traffic and smaller number of parameters, out-performing a state-of-the-art method by nearly 50% fewer false classifications. We show that our DL model generalizes for different classification objectives and encrypted web protocols. We also evaluate our approach on a public QUIC dataset with finer and application-level granularity in labeling, achieving an overall accuracy of 99%.
Traffic classification is essential in network management for a wide range of operations. Recently, it has become increasingly challenging with the widespread adoption of encryption in the Internet, for example, as a de facto in HTTP/2 and QUIC protocols. In the current state of encrypted traffic classification using deep learning (DL), we identify fundamental issues in the way it is typically approached. For instance, although complex DL models with millions of parameters are being used, these models implement a relatively simple logic based on certain header fields of the TLS handshake, limiting model robustness to future versions of encrypted protocols. Furthermore, encrypted traffic is often treated as any other raw input for DL, while crucial domain-specific considerations are commonly ignored. In this paper, we design a novel feature engineering approach used for encrypted Web protocols, and develop a neural network architecture based on stacked long short-term memory layers and convolutional neural networks. We evaluate our approach on a real-world Web traffic dataset from a major Internet service provider and mobile network operator. We achieve an accuracy of 95% in service classification with less raw traffic and a smaller number of parameters, outperforming a state-of-the-art method by nearly 50% fewer false classifications. We show that our DL model generalizes for different classification objectives and encrypted Web protocols. We also evaluate our approach on a public QUIC dataset with finer application-level granularity in labeling, achieving an overall accuracy of 99%.
Traffic classification is essential in network management for operations ranging from capacity planning, performance monitoring, volumetry, and resource provisioning, to anomaly detection and security. Recently, it has become increasingly challenging with the widespread adoption of encryption in the Internet, e.g., as a de-facto in HTTP/2 and QUIC protocols. In the current state of encrypted traffic classification using Deep Learning (DL), we identify fundamental issues in the way it is typically approached. For instance, although complex DL models with millions of parameters are being used, these models implement a relatively simple logic based on certain header fields of the TLS handshake, limiting model robustness to future versions of encrypted protocols. Furthermore, encrypted traffic is often treated as any other raw input for DL, while crucial domain-specific considerations are commonly ignored. In this paper, we design a novel feature engineering approach that generalizes well for encrypted web protocols, and develop a neural network architecture based on Stacked Long Short-Term Memory (LSTM) layers and Convolutional Neural Networks (CNN). We evaluate our approach on a real-world web traffic dataset from a major Internet service provider and Mobile Network Operator. We achieve an accuracy of 95% in service classification with less raw traffic and smaller number of parameters, out-performing a state-of-the-art method by nearly 50% fewer false classifications. We show that our DL model generalizes for different classification objectives and encrypted web protocols. We also evaluate our approach on a public QUIC dataset with finer application-level granularity in labeling, achieving an overall accuracy of 99%.
Traffic classification is essential in network management for operations ranging from capacity planning, performance monitoring, volumetry, and resource provisioning, to anomaly detection and security. Recently, it has become increasingly challenging with the widespread adoption of encryption in the Internet, e.g., as a de-facto in HTTP/2 and QUIC protocols. In the current state of encrypted traffic classification using Deep Learning (DL), we identify fundamental issues in the way it is typically approached. For instance, although complex DL models with millions of parameters are being used, these models implement a relatively simple logic based on certain header fields of the TLS handshake, limiting model robustness to future versions of encrypted protocols. Furthermore, encrypted traffic is often treated as any other raw input for DL, while crucial domain-specific considerations are commonly ignored. In this paper, we design a novel feature engineering approach that generalizes well for encrypted web protocols, and develop a neural network architecture based on Stacked Long Short-Term Memory (LSTM) layers and Convolutional Neural Networks (CNN). We evaluate our approach on a real-world web traffic dataset from a major Internet service provider and Mobile Network Operator. We achieve an accuracy of 95% in service classification with less raw traffic and smaller number of parameters, out-performing a state-of-the-art method by nearly 50% fewer false classifications. We show that our DL model generalizes for different classification objectives and encrypted web protocols. We also evaluate our approach on a public QUIC dataset with finer application-level granularity in labeling, achieving an overall accuracy of 99%.
In probabilistic programming languages (PPLs), a critical step in optimization-based inference methods is constructing, for a given model program, a trainable guide program. Soundness and effectiveness of inference rely on constructing good guides, but the expressive power of a universal PPL poses challenges. This paper introduces an approach to automatically generating guides for deep amortized inference in a universal PPL. Guides are generated using a type-directed translation per a novel behavioral type system. Guide generation extracts and exploits independence structures using a syntactic approach to conditional independence, with a semantic account left to further work. Despite the control-flow expressiveness allowed by the universal PPL, generated guides are guaranteed to satisfy a critical soundness condition and moreover, consistently improve training and inference over state-of-the-art baselines for a suite of benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.