Understanding why strains with different metabolic pathways that compete for a single limiting resource coexist is a challenging issue within a theoretical perspective. Previous investigations rely on mechanisms such as group or spatial structuring to achieve a stable coexistence between competing metabolic strategies. Nevertheless, coexistence has been experimentally reported even in situations where it cannot be attributed to spatial effects [Heredity 100, 471 (2008)HDTYAT0018-067X10.1038/sj.hdy.6801073]. According to that study a toxin expelled by one of the strains can be responsible for the stable maintenance of the two strain types. We propose a resource-based model in which an efficient strain with a slow metabolic rate competes with a second strain type which presents a fast but inefficient metabolism. Moreover, the model assumes that the inefficient strain produces a toxin as a by-product. This toxin affects the growth rate of both strains with different strength. Through an extensive exploration of the parameter space we determine the situations at which the coexistence of the two strains is possible. Interestingly, we observe that the resource influx rate plays a key role in the maintenance of the two strain types. In a scenario of resource scarcity the inefficient is favored, though as the resource influx rate is augmented the coexistence becomes possible and its domain is enlarged.
The evolutionary mechanisms of energy efficiency have been addressed. One important question is to understand how the optimized usage of energy can be selected in an evolutionary process, especially when the immediate advantage of gathering efficient individuals in an energetic context is not clear. We propose a model of two competing metabolic strategies differing in their resource usage, an efficient strain which converts resource into energy at high efficiency but displays a low rate of resource consumption, and an inefficient strain which consumes resource at a high rate but at low yield. We explore the dynamics in both well-mixed and structured populations. The selection for optimized energy usage is measured by the likelihood that an efficient strain can invade a population of inefficient strains. It is found that the parameter space at which the efficient strain can thrive in structured populations is always broader than observed in well-mixed populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.