Summary: Biodegradable thermosensitive triblock copolymers based on poly(ethylene glycol) and poly(lactic‐co‐glycolic acid) (PLGA‐PEG‐PLGA) prepared via ring opening polymerization were modified by itaconic anhydride (ITA), which gives copolymer both reactive double bonds and functional carboxylic acid groups essential for the reaction with biological active material. Functionalization conditions comprising ITA purification, temperature, time and presence of solvent were optimized with the respect to amount of end‐capped ITA. Maximum of 76.6 mol. % of bonded ITA were reached via “one pot” reaction in a bulk at 110 °C after 1.5 h. ITA functionalization thermally stabilized the original copolymer by increasing the initial degradation temperature Td from 284 °C to 294 °C and changing the negative glass transition temperature (Tg = ‐1.8 °C) to positive one up to 2.4 °C. The novel functionalized macromonomer can be cross‐linked either chemically or physically in order to produce new functionalized hydrogel network applicable as biomedical material in tissue engineering.
Biodegradable amphiphilic PLGA–PEG–PLGA triblock copolymers end-terminated with itaconic acid (ITA) having reactive double bond were end-linked by light and swelled in water. Hydrolytical stability of prepared hydrogels was evaluated.
The current limitations of calcium phosphate cements (CPCs) used in the field of bone regeneration consist of their brittleness, low injectability, disintegration in body fluids and low biodegradability. Moreover, no method is currently available to measure the setting time of CPCs in correlation with the evolution of the setting reaction. The study proposes that it is possible to improve and tune the properties of CPCs via the addition of a thermosensitive, biodegradable, thixotropic copolymer based on poly(lactic acid), poly(glycolic acid) and poly(ethylene glycol) (PLGA–PEG–PLGA) which undergoes gelation under physiological conditions. The setting times of alpha-tricalcium phosphate (α-TCP) mixed with aqueous solutions of PLGA–PEG–PLGA determined by means of time-sweep curves revealed a lag phase during the dissolution of the α-TCP particles. The magnitude of the storage modulus at lag phase depends on the liquid to powder ratio, the copolymer concentration and temperature. A sharp increase in the storage modulus was observed at the time of the precipitation of calcium deficient hydroxyapatite (CDHA) crystals, representing the loss of paste workability. The PLGA–PEG–PLGA copolymer demonstrates the desired pseudoplastic rheological behaviour with a small decrease in shear stress and the rapid recovery of the viscous state once the shear is removed, thus preventing CPC phase separation and providing good cohesion. Preliminary cytocompatibility tests performed on human mesenchymal stem cells proved the suitability of the novel copolymer/α-TCP for the purposes of mini-invasive surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.