Lie groups with two different root lengths allow two 'mixed sign' homomorphisms on their corresponding Weyl groups, which in turn give rise to two families of hybrid Weyl group orbit functions and characters. In this paper we extend the ideas leading to the Gaussian cubature formulas for families of polynomials arising from the characters of irreducible representations of any simple Lie group, to new cubature formulas based on the corresponding hybrid characters. These formulas are new forms of Gaussian cubature in the short root length case and new forms of Radau cubature in the long root case. The nodes for the cubature arise quite naturally from the (computationally efficient) elements of finite order of the Lie group.
Abstract:The paper develops applications of symmetric orbit functions, known from irreducible representations of simple Lie groups, in numerical analysis. It is shown that these functions have remarkable properties which yield to cubature formulas, approximating a weighted integral of any function by a weighted finite sum of function values, in connection with any simple Lie group. The cubature formulas are specialized for simple Lie groups of rank two. An optimal approximation of any function by multivariate polynomials arising from symmetric orbit functions is discussed.
Abstract. The discrete cosine transforms of types V-VIII are generalized to the antisymmetric and symmetric multivariate discrete cosine transforms. Four families of discretely and continuously orthogonal Chebyshev-like polynomials corresponding to the antisymmetric and symmetric generalizations of cosine functions are introduced. Each family forms an orthogonal basis of the space of all polynomials with respect to some weighted integral. Cubature formulas, which correspond to these families of polynomials and which stem from the developed discrete cosine transforms, are derived. Examples of three-dimensional interpolation formulas and three-dimensional explicit forms of the polynomials are presented.
Four types of discrete transforms of Weyl orbit functions on the finite point sets are developed. The point sets are formed by intersections of the dual-root lattices with the fundamental domains of the affine Weyl groups. The finite sets of weights, labelling the orbit functions, obey symmetries of the dual extended affine Weyl groups. Fundamental domains of the dual extended affine Weyl groups are detailed in full generality. Identical cardinality of the point and weight sets is proved and explicit counting formulas for these cardinalities are derived. Discrete orthogonality of complex-valued Weyl and real-valued Hartley orbit functions over the point sets is established and the corresponding discrete Fourier-Weyl and Hartley-Weyl transforms are formulated.
Discrete transforms of Weyl orbit functions on finite fragments of shifted dual root lattices are established. The congruence classes of the dual weight lattices intersected with the fundamental domains of the affine Weyl groups constitute the point sets of the transforms. The shifted weight lattices intersected with the fundamental domains of the extended dual affine Weyl groups form the sets of labels of Weyl orbit functions. The coinciding cardinality of the point and label sets and corresponding discrete orthogonality relations of Weyl orbit functions are demonstrated. The explicit counting formulas for the numbers of elements contained in the point and label sets are calculated. The forward and backward discrete Fourier-Weyl transforms, together with the associated interpolation and Plancherel formulas, are presented. The unitary transform matrices of the discrete transforms are exemplified for the case A 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.