A series of 80 7-(het)aryl- and 7-ethynyl-7-deazapurine ribonucleosides bearing a methoxy, methylsulfanyl, methylamino, dimethylamino, methyl, or oxo group at position 6, or 2,6-disubstituted derivatives bearing a methyl or amino group at position 2, were prepared, and the biological activity of the compounds was studied and compared with that of the parent 7-(het)aryl-7-deazaadenosine series. Several of the compounds, in particular 6-substituted 7-deazapurine derivatives bearing a furyl or ethynyl group at position 7, were significantly cytotoxic at low nanomolar concentrations whereas most were much less potent or inactive. Promising activity was observed with some compounds against Mycobacterium bovis and also against hepatitis C virus in a replicon assay.
Acyclic nucleoside phosphonates (ANPs) that contain a 6-oxopurine base are good inhibitors of the Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) 6-oxopurine phosphoribosyltransferases (PRTs). Chemical modifications based on the crystal structure of 2-(phosphonoethoxy)ethylguanine (PEEG) in complex with human HGPRT have led to the design of new ANPs. These novel compounds contain a second phosphonate group attached to the ANP scaffold. {[(2-[(Guanine-9Hyl)methyl]propane-1,3-diyl)bis(oxy)]bis(methylene)}diphosphonic acid (compound 17) exhibited a K i value of 30 nM for human HGPRT and 70 nM for Pf HGXPRT. The crystal structure of this compound in complex with human HGPRT shows that it fills or partially fills three critical locations in the active site: the binding sites of the purine base, the 5′-phosphate group, and pyrophosphate. This is the first HG(X)PRT inhibitor that has been able to achieve this result. Prodrugs have been synthesized resulting in IC 50 values as low as 3.8 μM for Pf grown in cell culture, up to 25-fold lower compared to the parent compounds.
7-(2-Thienyl)-7-deazaadenosine (AB61) showed nanomolar cytotoxic activities against various cancer cell lines but only mild (micromolar) activities against normal fibroblasts. The selectivity of AB61 was found to be due to inefficient phosphorylation of AB61 in normal fibroblasts. The phosphorylation of AB61 in the leukemic CCRF-CEM cell line proceeds well and it was shown that AB61 is incorporated into both DNA and RNA, preferentially as a ribonucleotide. It was further confirmed that a triphosphate of AB61 is a substrate for both RNA and DNA polymerases in enzymatic assays. Gene expression analysis suggests that AB61 affects DNA damage pathways and protein translation/folding machinery. Indeed, formation of large 53BP1 foci was observed in nuclei of AB61-treated U2OS-GFP-53BP1 cells indicating DNA damage. Random incorporation of AB61 into RNA blocked its translation in an in vitro assay and reduction of reporter protein expression was also observed in mice after 4-hour treatment with AB61. AB61 also significantly reduced tumor volume in mice bearing SK-OV-3, BT-549, and HT-29 xenografts. The results indicate that AB61 is a promising compound with unique mechanism of action and deserves further development as an anticancer agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.