Aneuploidy is the most frequent single cause leading into termination of early development in human and animal reproduction. Although mouse is frequently used as model organism for studying the aneuploidy, we have only incomplete information about the frequency of numerical chromosomal aberrations throughout development, usually limited to a particular stage or assumed from the occurrence of micronuclei. In our study, we systematically scored aneuploidy in in vivo mouse embryos, from zygotes up to 16-cell stage, using kinetochore counting assay. We show here that the frequency of aneuploidy per blastomere remains relatively similar from zygotes until 8-cell embryos and then increases in 16-cell embryos. Due to the accumulation of blastomeres, aneuploidy per embryo increases gradually during this developmental period. Our data also revealed that the aneuploidy from zygotes and 2-cell embryos does not propagate further into later developmental stages, suggesting that embryos suffering from aneuploidy are eliminated at this stage. Experiments with reconstituted live embryos revealed, that hyperploid blastomeres survive early development, although they exhibit slower cell cycle progression and suffer frequently from DNA fragmentation and cell cycle arrest.
Early embryonic development is characterized by a plethora of very complex and simultaneously operating processes, which are constantly changing cellular morphology and behaviour. After fertilization, blastomeres of the newly created embryo undergo global epigenetic changes and simultaneously initiate transcription from the zygotic genome and differentiation forming separate cell lineages. Some of these mechanisms were extensively studied during the last several decades and valuable insight was gained into how these processes are regulated at the molecular level. We have, however, a still very limited understanding of how multiple events are coordinated during rapid development of an early mammalian embryo. In this review, we discuss some aspects of early embryonic development in mammals, namely the fidelity of chromosome segregation and occurrence of aneuploidy, as well as the clinical applications of cell cycle monitoring in human embryos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.