For modelling of various physical processes, geodesic lines and almost geodesic curves serve as a useful tool. Trasformations or mappings between spaces (endowed with the metric or connection) which preserve such curves play an important role in physics, particularly in mechanics, and in geometry as well. Our aim is to continue investigations concerning existence of almost geodesic mappings of manifolds with linear (affine) connection, particularly of the so-calledπ 1 mappings, i.e. canonical almost geodesic mappings of type π 1 according to Sinyukov. First we give necessary and sufficient conditions for existence ofπ 1 mappings of a manifold endowed with a linear connection onto pseudo-Riemannian manifolds. The conditions take the form of a closed system of PDE's of first order of Cauchy type. Further we deduce necessary and sufficient conditions for existence ofπ 1 mappings onto generalized Ricci-symmetric spaces. Our results are generalizations of some previous theorems obtained by N.S. Sinyukov.
This paper concerns with rotary mappings of two-dimensional spaces with an affine connection onto (pseudo-) Riemannian spaces. The results obtained in the theory of rotary mappings are further developed. We prove that any (pseudo-) Riemannian space admits rotary mapping. There are also presented certain properties from which yields the existence of these rotary mappings.
In the paper we consider almost geodesic mappings of the first type of spaces with affine connections onto generalized 2-Ricci-symmetric spaces, generalized 3-Ricci-symmetric spaces, and generalized m-Ricci-symmetric spaces. In either case the main equations for the mappings are obtained as a closed system of linear differential equations of Cauchy type in the covariant derivatives. The obtained results extend an amount of research produced by N.S. Sinyukov, V.E. Berezovski, J. Mikeš.
In this paper we study the theory of F-planar mappings of spaces with affine connection. We obtained condition, which preserved the curvature tensor. We also studied canonical F-planar mappings of space with affine connection onto symmetric spaces. In this case, the main equations have the partial differential Cauchy type form in covariant derivatives. We got the set of substantial real parameters on which depends the general solution of that PDE's system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.