The backbone dynamics of the major coat protein (gVIIIp) of the filamentous bacteriophage M13, solubilized in detergent micelles, have been studied using 15N nuclear magnetic resonance spectroscopy at three frequencies. Motional parameters and overall and internal correlation times were derived with the model-free approach. It was also checked whether these parameters had to be modified due to anisotropic motion of the protein/micelle complex. Reduced spectral density mapping was used to calculate the spectral densities at J(O), J(omegaN), and [J(omegaH)]. The spectral densities were interpreted by mapping a linear or scaled linear combination of two Lorentzians onto a J(O)-J(omega) plot. The major coat protein of bacteriophage M13 consists of two alpha-helices, one of which is hydrophobic and located within the micelle, while the other is amphipathic and located on the surface of the micelle. Our results indicate that the motion of the hydrophobic helix is restricted such that it corresponds to the overall tumbling of the protein/micelle complex. The interpretation of the relaxation data of the amphipathic helix by means of the model-free approach and the reduced spectral density mapping indicate that in addition to the overall motion all residues in this helix are subject to motion on the fast nanosecond and picosecond time scales. The motions of the vectors in the low nanosecond range are characterized by similar values of the spectral densities and correlation times and represent the motion of the amphipathic helix on and away from the surface of the micelle. The relaxation data of the residues in the hinge region connecting the helices show that there is an abrupt change from highly restricted to less restricted motion. Both the C-terminal and N-terminal residues are very mobile.
Large concerted motions of proteins which span its "essential space," are an important component of protein dynamics. We investigate to what extent structure ensembles generated with standard structure calculation techniques such as simulated annealing can capture these motions by comparing them to long-time molecular dynamics (MD) trajectories. The motions are analyzed by principal component analysis and compared using inner products of eigenvectors of the respective covariance matrices. Two very different systems are studied, the beta-spectrin PH domain and the single-stranded DNA binding protein (ssDBP) from the filamentous phage Pf3. A comparison of the ensembles from NMR and MD shows significant overlap of the essential spaces, which in the case of ssDBP is extraordinarily high. The influence of variations in the specifications of distance restraints is investigated. We also study the influence of the selection criterion for the final structure ensemble on the definition of mobility. The results suggest a modified criterion that improves conformational sampling in terms of amplitudes of correlated motion.
Large concerted motions of proteins which span its "essential space," are an important component of protein dynamics. We investigate to what extent structure ensembles generated with standard structure calculation techniques such as simulated annealing can capture these motions by comparing them to long-time molecular dynamics (MD) trajectories. The motions are analyzed by principal component analysis and compared using inner products of eigenvectors of the respective covariance matrices. Two very different systems are studied, the beta-spectrin PH domain and the single-stranded DNA binding protein (ssDBP) from the filamentous phage Pf3. A comparison of the ensembles from NMR and MD shows significant overlap of the essential spaces, which in the case of ssDBP is extraordinarily high. The influence of variations in the specifications of distance restraints is investigated. We also study the influence of the selection criterion for the final structure ensemble on the definition of mobility. The results suggest a modified criterion that improves conformational sampling in terms of amplitudes of correlated motion.
The amino acid sequence of the novel lantibiotic epilancin K7 from Staphylococcus epidermidis K7 was determined by NMR spectroscopy. NMR spectroscopy was used because sequencing by conventional Edman degradation techniques was prohibited by internal sequence blocks owing to the presence of modified residues. Epilancin K7 consists of 31 residues, including two alpha,beta-didehydroalanine (one-letter code U) and two alpha,beta-didehydrobutyrine (O) residues, one lanthionine (A-S-A), two beta-methyllanthionines (A*-S-A), and six lysines. Epilancin K7 has a molecular mass of 3032 +/- 1.5 Da. The amino acid sequence of epilancin K7 was derived from both through-space dipolar proton-proton interactions and through-bond scalar proton-carbon interactions as detected by two-dimensional 1H-NOESY, 1H-ROESY and three-dimensional 1H-TOCSY-NOESY, and by two-dimensional 1H,13C-heteronuclear multiple-bond correlation spectroscopy, respectively. The sequence is as follows: [sequence: see text] The N-terminal residue X partly resembles an alanine but its exact nature is unclear. The organization of the sulfide-bridge-containing (beta-methyl-)lanthionines was revealed by 1H-NMR and 1H,13C-NMR spectroscopy. Epilancin K7 has a linear structure and a high positive net charge, and therefore is classified as a type-A lantibiotic. NMR analysis of a degraded though still active form of epilancin K7 showed that two N-terminal residues of epilancin K7 were missing, owing to decomposition at the alpha,beta-didehydro alanine at position 3; it was called the epilancin K7-(3-31)-peptide (peptide fragment of epilancin K7 consisting of positions 3-31). The usefulness of three-dimensional 1H-TOCSY-NOESY, and two-dimensional 1H,13C-heteronuclear multiple-bond correlation spectroscopy at natural abundance for the study of (modified) polypeptides is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.