Purpose In the field of medical image analysis, deep learning methods gained huge attention over the last years. This can be explained by their often improved performance compared to classic explicit algorithms. In order to work well, they need large amounts of annotated data for supervised learning, but these are often not available in the case of medical image data. One way to overcome this limitation is to generate synthetic training data, e.g., by performing simulations to artificially augment the dataset. However, simulations require domain knowledge and are limited by the complexity of the underlying physical model. Another method to perform data augmentation is the generation of images by means of neural networks. Methods We developed a new algorithm for generation of synthetic medical images exhibiting speckle noise via generative adversarial networks (GANs). Key ingredient is a speckle layer, which can be incorporated into a neural network in order to add realistic and domain-dependent speckle. We call the resulting GAN architecture SpeckleGAN. Results We compared our new approach to an equivalent GAN without speckle layer. SpeckleGAN was able to generate ultrasound images with very crisp speckle patterns in contrast to the baseline GAN, even for small datasets of 50 images. SpeckleGAN outperformed the baseline GAN by up to 165 % with respect to the Fréchet Inception distance. For artery layer and lumen segmentation, a performance improvement of up to 4 % was obtained for small datasets, when these were augmented with images by SpeckleGAN. Conclusion SpeckleGAN facilitates the generation of realistic synthetic ultrasound images to augment small training sets for deep learning based image processing. Its application is not restricted to ultrasound images but could be used for every imaging methodology that produces images with speckle such as optical coherence tomography or radar.
Purpose Intravascular ultrasound (IVUS) imaging is crucial for planning and performing percutaneous coronary interventions. Automatic segmentation of lumen and vessel wall in IVUS images can thus help streamlining the clinical workflow. State-of-the-art results in image segmentation are achieved with data-driven methods like convolutional neural networks (CNNs). These need large amounts of training data to perform sufficiently well but medical image datasets are often rather small. A possibility to overcome this problem is exploiting alternative network architectures like capsule networks. Methods We systematically investigated different capsule network architecture variants and optimized the performance on IVUS image segmentation. We then compared our capsule network with corresponding CNNs under varying amounts of training images and network parameters. Results Contrary to previous works, our capsule network performs best when doubling the number of capsule types after each downsampling stage, analogous to typical increase rates of feature maps in CNNs. Maximum improvements compared to the baseline CNNs are 20.6% in terms of the Dice coefficient and 87.2% in terms of the average Hausdorff distance. Conclusion Capsule networks are promising candidates when it comes to segmentation of small IVUS image datasets. We therefore assume that this also holds for ultrasound images in general. A reasonable next step would be the investigation of capsule networks for few- or even single-shot learning tasks.
The distinction between malignant and benign tumors is essential to the treatment of cancer. The tissue's elasticity can be used as an indicator for the required tissue characterization. Optical coherence elastography (OCE) probes have been proposed for needle insertions but have so far lacked the necessary load sensing capabilities. We present a novel OCE needle probe that provides simultaneous optical coherence tomography (OCT) imaging and load sensing at the needle tip. We demonstrate the application of the needle probe in indentation experiments on gelatin phantoms with varying gelatin concentrations. We further implement two deep learning methods for the end-toend sample characterization from the acquired OCT data. We report the estimation of gelatin sample weight ratios [wt%] in unseen samples with a mean error of 1.21 ± 0.91 wt%. Both evaluated deep learning models successfully provide sample characterization with different advantages regarding the accuracy and inference time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.