In neuroscience, attention has been shown to bidirectionally interact with reinforcement learning (RL) processes. This interaction is thought to support dimensionality reduction of task representations, restricting computations to relevant features. However, it remains unclear whether these properties can translate into real algorithmic advantages for artificial agents, especially in dynamic environments. We design a model incorporating a self-attention mechanism that implements task-state representations in semantic feature-space, and test it on a battery of Atari games. To evaluate the agent's selective properties, we add a large volume of task-irrelevant features to observations. In line with neuroscience predictions, self-attention leads to increased robustness to noise compared to benchmark models. Strikingly, this self-attention mechanism is general enough, such that it can be naturally extended to implement a transient working-memory, able to solve a partially observable maze task. Lastly, we highlight the predictive quality of attended stimuli. Because we use semantic observations, we can uncover not only which features the agent elects to base decisions on, but also how it chooses to compile more complex, relational features from simpler ones. These results formally illustrate the benefits of attention in deep RL and provide evidence for the interpretability of self-attention mechanisms.Preprint. Under review.
Analog integrated circuit sizing is notoriously difficult to automate due to its complexity and scale; thus, it continues to heavily rely on human expert knowledge. This work presents a machine learning-based design automation methodology comprising pre-defined building blocks such as current mirrors or differential pairs and pre-computed look-up tables for electrical characteristics of primitive devices. Modeling the behavior of primitive devices around the operating point with neural networks combines the speed of equation-based methods with the accuracy of simulation-based approaches and, thereby, brings quality of life improvements for analog circuit designers using the gm/Id method. Extending this procedural automation method for human design experts, we present a fully autonomous sizing approach. Related work shows that the convergence properties of conventional optimization approaches improve significantly when acting in the electrical domain instead of the geometrical domain. We, therefore, formulate the circuit sizing task as a sequential decision-making problem in the alternative electrical design space. Our automation approach is based entirely on reinforcement learning, whereby abstract agents learn efficient design space navigation through interaction and without expert guidance. These agents’ learning behavior and performance are evaluated on circuits of varying complexity and different technologies, showing both the feasibility and portability of the work presented here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.