We consider a two-dimensional model of viscoelastic von Kármán plates in the Kelvin’s-Voigt’s rheology derived from a three-dimensional model at a finite-strain setting in Friedrich and Kružík (Arch Ration Mech Anal 238: 489–540, 2020). As the width of the plate goes to zero, we perform a dimension-reduction from 2D to 1D and identify an effective one-dimensional model for a viscoelastic ribbon comprising stretching, bending, and twisting both in the elastic and the viscous stress. Our arguments rely on the abstract theory of gradient flows in metric spaces by Sandier and Serfaty (Commun Pure Appl Math 57:1627–1672, 2004) and complement the $$\Gamma $$ Γ -convergence analysis of elastic von Kármán ribbons in Freddi et al. (Meccanica 53:659–670, 2018). Besides convergence of the gradient flows, we also show convergence of associated time-discrete approximations, and we provide a corresponding commutativity result.
We derive an effective one-dimensional limit from a three-dimensional Kelvin-Voigt model for viscoelastic thin-walled beams, in which the elastic and the viscous stress tensor comply with a frame-indifference principle. The limiting system of equations comprises stretching, bending, and twisting both in the elastic and the viscous stress. It coincides with the model already identified via [24] and [26] by a successive dimension reduction, first from 3D to a 2D theory for von Kármán plates and then from 2D to a 1D theory for ribbons. In the present paper, we complement the previous analysis by showing that the limit can also be obtained by sending the height and width of the beam to zero simultaneously. Our arguments rely on the static Γ-convergence in [21], on the abstract theory of metric gradient flows [7], and on evolutionary Γ-convergence [41].
We derive an effective one-dimensional limit from a three-dimensional Kelvin–Voigt model for viscoelastic thin-walled beams, in which the elastic and the viscous stress tensor comply with a frame-indifference principle. The limiting system of equations comprises stretching, bending, and twisting both in the elastic and the viscous stress. It coincides with the model already identified via Friedrich and Kružík (Arch Ration Mech Anal 238:489–540, 2020) and Friedrich and Machill (Nonlinear Differ Equ Appl NoDEA 29, Article number: 11, 2022) by a successive dimension reduction, first from 3D to a 2D theory for von Kármán plates and then from 2D to a 1D theory for ribbons. In the present paper, we complement the previous analysis by showing that the limit can also be obtained by sending the height and width of the beam to zero simultaneously. Our arguments rely on the static $$\Gamma $$ Γ -convergence in Freddi et al. (Math Models Methods Appl Sci 23:743–775, 2013), on the abstract theory of metric gradient flows (Ambrosio et al. in Gradient flows in metric spaces and in the space of probability measures. Lectures mathematics, ETH Zürich, Birkhäuser, Basel, 2005), and on evolutionary $$\Gamma $$ Γ -convergence (Sandier and Serfaty in Commun Pure Appl Math 57:1627–1672, 2004).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.