Cell contact inhibition (CCI) is deregulated in cancer. Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. We found that dual-specificity phosphatase 10 (DUSP10) is involved in CRC. DUSP10 overexpression increased the growth of CRC cell lines and mouse xenografts, while the opposite phenotype was observed by DUSP10 silencing. High cell density (HD) induced DUSP10 expression in CRC cell lines, particularly within the nucleus. Yes-associated protein 1 (YAP1) is activated by dephosphorylation, controlling organ growth and CCI, both processes being deregulated in CRC. Expression levels and localization of DUSP10 matched with YAP1 levels in CRC cell lines. DUSP10 and YAP1 co-immunoprecipitated and their interaction was dependent on YAP1 Ser397. The existence of DUSP10 and YAP1 pathway in vivo was confirmed by using a transgenic Drosophila model. Finally, in CRC patients’ samples, high levels of nuclear DUSP10 correlated with nuclear YAP1 in epithelial tumor tissue. Strong nuclear DUSP10 staining also correlated with high tumor stage and poor survival. Overall, these findings describe a DUSP10–YAP1 molecular link in CRC cell lines promoting cell growth in HD. We present evidence suggesting a pro-tumorigenic role of nuclear DUSP10 expression in CRC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.