The study evaluates mechanical properties of APM particulate aluminum foams built up from adhesively bonded Al foam spheres. Foams of matrix alloy AlSi10 are compared, with PM AlSi7 foams used as reference. The influence of density is studied both for quasi‐static and dynamic compressive loading in a range from ∼0.35 to 0.71 g cm−3. The effect of varying the bonding agent is evaluated for a single density and both strain rate levels by replacing the standard, high‐strength epoxy‐based adhesive with a polyamide of greatly increased ductility. The result is a clear shift of fracture events to higher strain levels, as well as the introduction of a strain‐rate dependency of strength.
Rolling experiments were carried out on a ternary Mg-Zn-Ca alloy and its modification with zirconium. Short time annealing of as-rolled sheets is used to reveal the microstructure and texture development. The texture of the as-rolled sheets can be characterised by basal pole figures with split peak towards the rolling direction (RD) and a broad transverse angular spread of basal planes towards the transverse direction (TD). During annealing the RD split peaks as well as orientations in the sheet plane vanish whereas the distribution of orientations tilted towards the TD remains. It is shown in EBSD measurements that during rolling bands of twin containing structures form. During subsequent annealing basal orientations close to the sheet plane vanish based on a grain nucleation and growth mechanism of recrystallisation. Orientations with tilt towards the TD remain in grains that do not undergo such a mechanism. The addition of Zr delays texture weakening.
The substitution of conventional materials such as aluminium alloys and steels with the lightest structural metal magnesium and its alloys can yield significant weight saving in the transportation industry and hence, reduce vehicle weight and greenhouse gas emissions. Producing magnesium sheets by conventional hot rolling is expensive due to the large number of rolling passes to final gauge and annealing steps at elevated temperatures between the rolling passes. Twin roll casting is a well established processing route for aluminium sheets which can reduce the necessary rolling passes to a bare minimum to reduce the production costs. This process is receiving increasing attention for the production of magnesium sheets. This study reveals first hand results of sheet metal forming experiments on magnesium sheets rolled from twin roll cast strip as well as conventional DC cast slabs. Two different alloys, AZ31 (Mg-3Al-1Zn-Mn) and rare earth element containing ZE10 (Mg-1Zn-RE) were investigated. It is known that these alloys show significant differences in the microstructure development during conventional rolling as a result of recrystallisation. For hot rolled AZ31, distinct textures are formed with the majority of basal planes oriented in the sheet plane and hence, unfavourably for basal slip. Conventionally rolled ZE10 commonly shows a much weaker texture. Forming limit diagrams are presented and discussed with respect to the initial texture of the sheets. Strain response to various strain paths and plastic anisotropy are evaluated. Results of twin roll cast sheets are compared with conventionally hot rolled sheet of the same alloys. Competitive formability can be achieved at 200°C for all tested sheets. While conventionally rolled sheets show a generally higher formability than their twin roll cast counterparts, ZE10 outperforms AZ31 for both processing routes.
Sheet metal forming experiments have been carried out on AZ31 and ZE10 sheets produced by rolling conventionally DC cast slabs as well as twin roll cast (TRC) strips. Nakajima tests were performed on the various sheet materials over the temperature range from RT to 200 °C using Hasek type samples of specified geometries to generate various strain paths. The strain path data were used to derive the forming limit curves as plotted in forming limit diagrams for the two alloys. The temperature dependence of the sheet formability is discussed in terms of the operating deformation mechanisms and the roles of alloy composition, initial texture and processing history.
The current paper explores experimentally and numerically obtained mechanical responses of the Nakazima-type sheet forming for the magnesium alloys ZE10 and AZ31 at elevated temperature (200 • C). The results from the experiments revealed sufficient ductility allowing sheet forming processes at the prescribed test temperature. The material's anisotropy recorded in previous experiments was confirmed. Differences in the mechanical response between the two materials in terms of strain paths during the forming experiments were quantified. The corresponding numerical responses were obtained employing a suitable constitutive model taking into account the characteristic anisotropy in deformation. In addition, for predicting limit conditions of the forming process, the localization criterion by Marciniak and Kuczynski was adopted. The constitutive model together with the localization criterion was implemented in a finite element framework based on a fully implicit time integration scheme. The reasonably good agreement between the responses of the model and the respective experiments indicated the predictive capabilities of the implemented model for the considered magnesium alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.