Ghrelin stimulates appetite, increases food intake and causes adiposity by mechanisms that include direct actions on the brain. Previously, we showed that intracerebroventricular administration of ghrelin has stimulatory and dopamine-enhancing properties. These effects of ghrelin are mediated via central nicotine receptors, suggesting that ghrelin can activate the acetylcholine-dopamine reward link. This reward link consists of cholinergic input from the laterodorsal tegmental area (LDTg) to the mesolimbic dopamine system that originates in the ventral tegmental area (VTA) and projects to the nucleus accumbens. Given that growth hormone secretagogue receptors (GHSR-1A) are expressed in the VTA and LDTg, brain areas involved in reward, the present series of experiments were undertaken to examine the hypothesis that these regions may mediate the stimulatory and dopamine-enhancing effects of ghrelin, by means of locomotor activity and in vivo microdialysis in freely moving mice. We found that local administration of ghrelin into the VTA (1 microg in 1 microl) induced an increase in locomotor activity and in the extracellular concentration of accumbal dopamine. In addition, local administration of ghrelin into the LDTg (1 microg in 1 microl) caused a locomotor stimulation and an increase in the extracellular levels of accumbal dopamine. Taken together, this indicates that ghrelin might, via activation of GHSR-1A in the VTA and LDTg, stimulate the acetylcholine-dopamine reward link, implicating that ghrelin is a part of the neurochemical overlap between the reward systems and those that regulate energy balance.
It is becoming increasingly apparent that there is a degree of neurochemical overlap between the reward systems and those regulating energy balance. We therefore investigated whether ghrelin, a stomach-derived and centrally derived orexigenic peptide, might act on the reward systems. Central ghrelin administration (1 microg/microL, to the third ventricle) induced an acute increase in locomotor activity as well as dopamine-overflow in the nucleus accumbens, suggesting that ghrelin can activate the mesoaccumbal dopamine system originating in the ventral tegmental area, a system associated with reward and motivated behaviour. The cholinergic afferents to the ventral tegmental area have been implicated in natural reward and in regulating mesoaccumbal dopamine neurons. The possibility that nicotinic receptors are involved in mediating the stimulatory and dopamine-enhancing effects of ghrelin is supported by the findings that peripheral injection of the unselective nicotinic antagonist mecamylamine (2.0 mg/kg) blocked these ghrelin-induced effects. Tentatively, ghrelin may, via activation of the acetylcholine-dopamine reward link, increase the incentive values of signals associated with motivated behaviours of importance for survival such as feeding behaviour. It will be important to discover whether this has therapeutic implications for compulsive addictive behaviours, such as eating behaviour disorders and drug dependence.
Neuropeptide Y (NPY), a 36-amino-acid peptide widely expressed in the brain is involved in many physiological responses, including hypothalamic control of food intake and cardiovascular homeostasis. NPY mediates its effects through binding to the Y1, Y2 and Y5 G-protein-coupled receptors. Little is known of the role of the Y2 receptor in mediating the different NPY effects. We inactivated the Y2 receptor subtype in mice and found that these mice developed increased body weight, food intake and fat deposition. The null mutant mice showed an attenuated response to leptin administration but a normal response to NPY-induced food intake and intact regulation of re-feeding and body weight after starvation. An absence of the Y2 receptor subtype also affected the basal control of heart rate, but did not influence blood pressure. These findings indicate an inhibitory role for the Y2 receptor subtype in the central regulation of body weight and control of food intake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.