ObjectivesMonitoring tacrolimus blood concentrations is important for preventing allograft rejection in transplant patients. Our hospital offers dried blood spot (DBS) sampling, giving patients the opportunity to sample a drop of blood from a fingerprick at home, which can be sent to the laboratory by mail. In this study, both a volumetric absorptive microsampling (VAMS) device and DBS sampling were compared to venous whole blood (WB) sampling.MethodsA total of 130 matched fingerprick VAMS, fingerprick DBS and venous WB samples were obtained from 107 different kidney transplant patients by trained phlebotomists for method comparison using Passing-Bablok regression. Bias was assessed using Bland-Altman. A multidisciplinary team pre-defined an acceptance limit requiring >80% of all matched samples within 15% of the mean of both samples. Sampling quality was evaluated for both VAMS and DBS samples.Results32.3% of the VAMS samples and 6.2% of the DBS samples were of insufficient quality, leading to 88 matched samples fit for analysis. Passing-Bablok regression showed a significant difference between VAMS and WB, with a slope of 0.88 (95% CI 0.81–0.97) but not for DBS (slope 1.00; 95% CI 0.95–1.04). Both VAMS (after correction for the slope) and DBS showed no significant bias in Bland-Altman analysis. For VAMS and DBS, the acceptance limit was met for 83.0% and 96.6% of the samples, respectively.ConclusionsVAMS sampling can replace WB sampling for tacrolimus trough concentration monitoring, but VAMS sampling is currently inferior to DBS sampling, both regarding sample quality and agreement with WB tacrolimus concentrations.
Background: Therapeutic drug monitoring (TDM) of immunosuppressive drugs is important for the prevention of allograft rejection in transplant patients. Several hospitals offer a microsampling service that provides patients the opportunity to sample a drop of blood from a fingerprick at home that can then be sent to the laboratory by mail. The aim of this study was to pilot an external quality control program.Methods: Fourteen laboratories from 7 countries participated (fully or partly) in 3 rounds of proficiency testing for the immunosuppressants tacrolimus, ciclosporin, everolimus, sirolimus, and mycophenolic acid. The microsampling devices included the following: Whatman 903 and DMPK-C, HemaXis, Mitra, and Capitainer-B. All assays were based on liquid chromatography with tandem mass spectrometry. In round 2, microsamples as well as liquid whole blood samples were sent, and 1 of these samples was a patient sample.Results: Imprecision CV% values for the tacrolimus microsamples reported by individual laboratories ranged from 13.2% to 18.2%, 11.7%-16.3%, and 12.2%-18.6% for rounds 1, 2, and 3, respectively. For liquid whole blood (round 2), the imprecision CV% values ranged from 3.9%-4.9%. For the other immunosuppressants, the results were similar. A great variety in analytical procedures was observed, especially the extraction method. For the patient sample, the microsample results led to different clinical decisions compared with that of the whole blood sample.Conclusions: Immunosuppressant microsampling methods show great interlaboratory variation compared with whole blood methods. This variation can influence clinical decision-making. Thus, harmonization and standardization are needed. Proficiency testing should be performed regularly for laboratories that use immunosuppressant microsampling techniques in patient care.
Gastrointestinal mucositis could potentially compromise drug absorption due to functional loss of mucosa and other pathophysiological changes in the gastrointestinal microenvironment. Little is known about this effect on commonly used anti-infectives. This study aimed to explore the association between different stages of gastrointestinal mucositis, drug exposure, and gut microbiota. A prospective, observational pilot study was performed in HSCT patients aged ≥ 18 years receiving anti-infectives orally. Left-over blood samples and fecal swabs were collected from routine clinical care until 14 days after HSCT to analyze drug and citrulline concentrations and to determine the composition of the gut microbiota. 21 patients with a median age of 58 (interquartile range 54–64) years were included with 252 citrulline, 155 ciprofloxacin, 139 fluconazole, and 76 acyclovir concentrations and 48 fecal swabs obtained. Severe gastrointestinal mucositis was observed in all patients. Due to limited data correlation analysis was not done for valacyclovir and fluconazole, however we did observe a weak correlation between ciprofloxacin and citrulline concentrations. This could suggest that underexposure of ciprofloxacin can occur during severe mucositis. A follow-up study using frequent sampling rather than the use of left-over would be required to investigate the relationship between gastrointestinal mucositis, drug exposure, and gut microbiome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.