We report on femtosecond pulse combining with up to four parallel chirped-pulse fiber amplifier channels. Active phase locking is implemented using the LOCSET (Locking of Optical Coherence by Single-detector Electronic-frequency Tagging) single detector feedback technique, resulting in 96.4%, 94.0%, and 93.9% relative combining efficiency with two, three, and four channels respectively. Theoretical and experimental analysis of combining efficiency dependence on amplitude and phase noise shows convergence to a fixed value with increasing number of channels, indicating that multi-channel pulse combining with LOCSET feedback should be scalable to very large numbers of channels.
We demonstrate coherent spectral beam combining and femtosecond pulse spectral synthesis using three parallel fiber chirped pulse amplifiers, each amplifying different ultrashort-pulse spectra. This proof-of-concept experiment opens a path to simultaneously overcome individual-amplifier energy and power limitations, as well as limitations on amplified pulse spectra due to the gain narrowing in a single fiber amplifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.