Nanostructured materials have gained importance in recent years due to their significantly enhanced properties. In particular, electrochemistry has a special role in producing a variety of nanostructured materials. In the current review, we discuss the superiority of electrochemical deposition techniques in synthesizing various nanomaterials that exhibit improved characteristics compared with materials produced by conventional techniques, as well as their classification, synthesis routes, properties and applications. The superior properties of a nanostructured nickel coating produced by electrochemical deposition are outlined. The properties of various nanostructured coating materials produced by electrochemical techniques are also described. Finally, the importance of nanostructured coatings in industrial applications as well as their potential in future technologies is emphasized.
Porous materials, developed by grafting functional groups through chemical surface modification with a surfactant, represent an innovative concept in energy storage. This work reports, in detail, the first practical realization of a novel carbon electrode based on grafting of vinyltrimethoxysilane (vtmos) functional group for energy storage in electric double layer capacitor (EDLC). Surface modification with surfactant vtmos enhances the hydrophobisation of activated carbon and the affinity toward propylene carbonate (PC) solvent, which improves the wettability of activated carbon in the electrolyte solution based on PC solvent, resulting in not only a lower resistance to the transport of electrolyte ions within micropores of activated carbon but also more usable surface area for the formation of electric double layer, and accordingly, higher specific capacitance, energy density, and power capability available from the capacitor based on modified carbon. Especially, the effects from surface modification become superior at higher discharge rate, at which much better EDLC performance (i.e., much higher energy density and power capability) has been achieved by the modified carbon, suggesting that the modified carbon is a novel and very promising electrode material of EDLC for large current applications where both high energy density and power capability are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.