International audienceAdvances in the synthesis and application of highly efficient polymers and small molecules over the last two decades have enabled the rapid advancement in the development of organic solar cells and photovoltaic technology as a promising alternative to conventional solar cells, based on silicon and other inorganic semiconducting materials. Among the different types of organic semiconducting materials, porphyrins and BODIPY-based small molecules and conjugated polymers attract high interest as efficient semiconducting organic materials for dye sensitized solar cells and bulk heterojunction organic solar cells. The highest power conversion efficiency exceeding 9% has been reported so far for porphyrin small molecules and 8.60% for conjugated polymers based on porphyrins. On the other hand, small molecules and conjugated polymers based on BODIPY moiety have been successfully used as donor materials for solution processed bulk heterojunction organic solar cells, and the resultant devices showed power conversion efficiencies exceeding 5.5%. In this article, the development of molecular design of porphyrins and BODIPY small molecules and polymers for bulk heterojunction organic solar cells are reviewed, and a guideline for the structure-performance relationship is provided
Two small molecules denoted as BD-pPor and BD-tPor composed of a central BODIPY core surrounded with two DPP and two porphyrin units have been designed and synthesized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.