Community ecology aims to understand what factors determine the assembly and dynamics of species assemblages at different spatiotemporal scales. To facilitate the integration between conceptual and statistical approaches in community ecology, we propose Hierarchical Modelling of Species Communities (HMSC) as a general, flexible framework for modern analysis of community data. While non-manipulative data allow for only correlative and not causal inference, this framework facilitates the formulation of data-driven hypotheses regarding the processes that structure communities. We model environmental filtering by variation and covariation in the responses of individual species to the characteristics of their environment, with potential contingencies on species traits and phylogenetic relationships. We capture biotic assembly rules by species-to-species association matrices, which may be estimated at multiple spatial or temporal scales. We operationalise the HMSC framework as a hierarchical Bayesian joint species distribution model, and implement it as R-and Matlab-packages which enable computationally efficient analyses of large data sets. Armed with this tool, community ecologists can make sense of many types of data, including spatially explicit data and time-series data. We illustrate the use of this framework through a series of diverse ecological examples.
Alert burden plays a role in influencing provider response to medication alerts. An increased number of alerts a provider saw during a one-day period did not directly lead to decreased response to alerts. Given the multiple factors influencing the response to alerts, efforts focused solely on burden are not likely to be effective.
Repeated FENO measurements were stable in CF patients, whereas FENO increased in all patients with CFTR gating mutations treated with ivacaftor. Acute changes in FENO may serve as a biomarker of restored CFTR function in the CF lower airway during CFTR modulator treatment.
A two-level Gaussian process (GP) joint model is proposed to improve personalized prediction of medical monitoring data. The proposed model is applied to jointly analyze multiple longitudinal biomedical outcomes, including continuous measurements and binary outcomes, to achieve better prediction in disease progression. At the population level of the hierarchy, two independent GPs are used to capture the nonlinear trends in both the continuous biomedical marker and the binary outcome, respectively; at the individual level, a third GP, which is shared by the longitudinal measurement model and the longitudinal binary model, induces the correlation between these two model components and strengthens information borrowing across individuals. The proposed model is particularly advantageous in personalized prediction. It is applied to the motivating clinical data on cystic fibrosis disease progression, for which lung function measurements and onset of acute respiratory events are monitored jointly throughout each patient’s clinical course. The results from both the simulation studies and the cystic fibrosis data application suggest that the inclusion of the shared individual-level GPs under the joint model framework leads to important improvements in personalized disease progression prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.