In Linguistics and Psycholinguistics, phonotactics refers to the constraints on individual sounds in a given language that restrict how those sounds can be ordered to form words in that language. Previous empirical work in Psycholinguistics demonstrated that phonotactic knowledge influenced how quickly and accurately listeners retrieved words from that part of memory known as the mental lexicon. In the present study, we used three computer simulations to explore how three different cognitive network architectures could account for the previously observed effects of phonotactics on processing. The results of Simulation 1 showed that some—but not all—effects of phonotactics could be accounted for in a network where nodes represent words and edges connect words that are phonologically related to each other. In Simulation 2, a different network architecture was used to again account for some—but not all—effects of phonotactics and phonological neighborhood density. A bipartite network was used in Simulation 3 to account for many of the previously observed effects of phonotactic knowledge on spoken word recognition. The value of using computer simulations to explore different network architectures is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.