Homology between mitochondrial DNA (mtDNA) and nuclear DNA of mitochondrial origin (nuMTs) causes confounding when aligning short sequence reads to the reference human genome, as the true sequence origin cannot be determined. Using a systematic in silico approach, we here report the impact of all potential mitochondrial variants on alignment accuracy and variant calling. A total of 49,707 possible mutations were introduced across the 16,569 bp reference mitochondrial genome (16,569 × 3 alternative alleles), one variant at-at-time. The resulting in silico fragmentation and alignment to the entire reference genome (GRCh38) revealed preferential mapping of mutated mitochondrial fragments to nuclear loci, as variants increased loci similarity to nuMTs, for a total of 807, 362, and 41 variants at 333, 144, and 27 positions when using 100, 150, and 300 bp single-end fragments. We subsequently modeled these affected variants at 50% heteroplasmy and carried out variant calling, observing bias in the reported allele frequencies in favor of the reference allele. Four variants (chrM:6023A, chrM:4456T, chrM:5147A, and chrM:7521A) including a possible hypertension factor, chrM:4456T, caused 100% loss of coverage at the mutated position (with all 100 bp single-end fragments aligning to homologous, nuclear positions instead of chrM), rendering these variants undetectable when aligning to the entire reference genome. Furthermore, four mitochondrial variants reported to be pathogenic were found to cause significant loss of coverage and select haplogroup-defining SNPs were shown to exacerbate the loss of coverage caused by surrounding variants. Increased fragment length and use of paired-end reads both improved alignment accuracy.
Network inference is a notoriously challenging problem. Inferred networks are associated with high uncertainty and likely riddled with false positive and false negative interactions. Especially for biological networks we do not have good ways of judging the performance of inference methods against real networks, and instead we often rely solely on the performance against simulated data. Gaining confidence in networks inferred from real data nevertheless thus requires establishing reliable validation methods. Here, we argue that the expectation of mixing patterns in biological networks such as gene regulatory networks offers a reasonable starting point: interactions are more likely to occur between nodes with similar biological functions. We can quantify this behaviour using the assortativity coefficient, and here we show that the resulting heuristic, functional assortativity, offers a reliable and informative route for comparing different inference algorithms.
Network inference is a notoriously challenging problem. Inferred networks are associated with high uncertainty and likely riddled with false positive and false negative interactions. Especially for biological networks we do not have good ways of judging the performance of inference methods against real networks, and instead we often rely solely on the performance against simulated data. Gaining confidence in networks inferred from real data nevertheless thus requires establishing reliable validation methods. Here, we argue that the expectation of mixing patterns in biological networks such as gene regulatory networks offers a reasonable starting point: interactions are more likely to occur between nodes with similar biological functions. We can quantify this behaviour using the assortativity coefficient, and here we show that the resulting heuristic, functional assortativity, offers a reliable and informative route for comparing different inference algorithms.
Summary HyperGraphs.jl is a Julia package that implements hypergraphs. These are a generalization of graphs that allow us to represent n-ary relationships and not just binary, pairwise relationships. High-order interactions are commonplace in biological systems and are of critical importance to their dynamics; hypergraphs thus offer a natural way to accurately describe and model these systems. Availability and implementation HyperGraphs.jl is freely available under the MIT license. Source code and documentation can be found at https://github.com/lpmdiaz/HyperGraphs.jl. Supplementary information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.