In causal inference confounding may be controlled either through regression adjustment in an outcome model, or through propensity score adjustment or inverse probability of treatment weighting, or both. The latter approaches, which are based on modelling of the treatment assignment mechanism and their doubly robust extensions have been difficult to motivate using formal Bayesian arguments; in principle, for likelihood-based inferences, the treatment assignment model can play no part in inferences concerning the expected outcomes if the models are assumed to be correctly specified. On the other hand, forcing dependency between the outcome and treatment assignment models by allowing the former to be misspecified results in loss of the balancing property of the propensity scores and the loss of any double robustness. In this paper, we explain in the framework of misspecified models why doubly robust inferences cannot arise from purely likelihood-based arguments, and demonstrate this through simulations. As an alternative to Bayesian propensity score analysis, we propose a Bayesian posterior predictive approach for constructing doubly robust estimation procedures. Our approach appropriately decouples the outcome and treatment assignment models by incorporating the inverse treatment assignment probabilities in Bayesian causal inferences as importance sampling weights in Monte Carlo integration.A revised version of this article has been accepted for publication in Biometrika, published by Oxford University Press. Saarela, O., Belzile, L. R. and D. A. Stephens. A Bayesian view of doubly robust causal inference,Interest then lies in the identifiability of the average potential outcomes based on the observed data.
Liouville copulas introduced in [31] are asymmetric generalizations of the ubiquitous Archimedean copula class. They are the dependence structures of scale mixtures of Dirichlet distributions, also called Liouville distributions. In this paper, the limiting extreme-value attractors of Liouville copulas and of their survival counterparts are derived. The limiting max-stable models, termed here the scaled extremal Dirichlet, are new and encompass several existing classes of multivariate max-stable distributions, including the logistic, negative logistic and extremal Dirichlet. As shown herein, the stable tail dependence function and angular density of the scaled extremal Dirichlet model have a tractable form, which in turn leads to a simple de Haan representation. The latter is used to design efficient algorithms for unconditional simulation based on the work of [10] and to derive tractable formulas for maximum-likelihood inference. The scaled extremal Dirichlet model is illustrated on river flow data of the river Isar in southern Germany.
We use a combination of extreme value statistics, survival analysis and computer-intensive methods to analyse the mortality of Italian and French semi-supercentenarians. After accounting for the effects of the sampling frame, extreme-value modelling leads to the conclusion that constant force of mortality beyond 108 years describes the data well and there is no evidence of differences between countries and cohorts. These findings are consistent with use of a Gompertz model and with previous analysis of the International Database on Longevity and suggest that any physical upper bound for the human lifespan is so large that it is unlikely to be approached. Power calculations make it implausible that there is an upper bound below 130 years. There is no evidence of differences in survival between women and men after age 108 in the Italian data and the International Database on Longevity, but survival is lower for men in the French data.
There is sustained and widespread interest in understanding the limit, if there is any, to the human life span. Apart from its intrinsic and biological interest, changes in survival in old age have implications for the sustainability of social security systems. A central question is whether the endpoint of the underlying lifetime distribution is finite. Recent analyses of data on the oldest human lifetimes have led to competing claims about survival and to some controversy, due in part to incorrect statistical analysis. This article discusses the particularities of such data, outlines correct ways of handling them, and presents suitable models and methods for their analysis. We provide a critical assessment of some earlier work and illustrate the ideas through reanalysis of semisupercentenarian lifetime data. Our analysis suggests that remaining life length after age 109 is exponentially distributed and that any upper limit lies well beyond the highest lifetime yet reliably recorded. Lower limits to 95% confidence intervals for the human life span are about 130 years, and point estimates typically indicate no upper limit at all. Expected final online publication date for the Annual Review of Statistics and Its Application, Volume 9 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.