Over the past decade the use of Unmanned Aerial Vehicles (UAVs) for the inspection of turbine blades has been registering steady progress and is fast becoming a well-established inspection methodology especially at offshore wind farms. A UAV operating in the open field is subject to varying ambient conditions which have an effect on the power required to maintain stable flight. This may have an impact on the flight endurance of the UAV, especially when operating in windy conditions. Simulations are a very useful tool for estimating the impact of such ambient conditions on the performance and flight endurance of a UAV. However, it is extremely difficult to accurately model all the dynamics at play in the open field where flow conditions are highly stochastic. Few open field studies necessary to validate such simulation models have been carried out to date in this regard. In this study, the impact of open field wind conditions on the flight endurance of a hovering UAV is investigated. The test vehicle used in this study is a quadrotor UAV, which was fitted with an array of sensors to monitor power consumption parameters of the propulsion motors whilst the vehicle is hovering at a fixed altitude above the ground. The quadrotor was also fitted with an ultrasonic wind sensor in order to measure the relevant wind parameters that the quadrotor was being subjected to during the hovering study. The test UAV was flown in different ambient conditions to establish the impact on the UAV flight endurance when subjected to different wind speeds. Results from a series of UAV test flights in the open field indicated that the power required by the UAV to maintain hovering flight decreases as the wind speed increases.
The aim of this research was to establish the validity of wind measurements from on board a multirotor Remotely Piloted Aircraft System (RPAS) for the purposes of wind monitoring applications. A custom-built hexacopter RPAS recorded wind speed and direction by means of an onboard ultrasonic wind sensor, whilst operating in the inherently highly stochastic nature of open field atmospheric conditions. Experimental data were collected during open field hovering flights subject to different ambient conditions with free stream horizontal wind speeds reaching up to 12 m/s. Flights were conducted at different altitudes above ground level and in proximity to a Light Detection and Ranging (LiDAR) remote wind measurement unit that was used as a low-resolution reference meteorological station. Very good correlation was obtained between the RPAS and LiDAR unit for both wind speed and wind direction measurements across all hovering flight altitudes. The RPAS-based wind speed measurements were found to have a consistent 1 m/s positive offset, whilst the RPAS-based wind direction readings had a 6.16° negative offset. These were potentially caused by differences in the localized wind fields between the LiDAR and RPAS measuring positions, as well as by localized RPAS rotor-induced air flows for wind speed measurements and potential slight misalignments in the instruments’ reference datum for wind direction readings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.