Accurate day-ahead load forecasting is an important task in smart energy communities, as it enables improved energy management and operation of flexibilities. Smart meter data from individual households within the communities can be used to improve such forecasts. In this study, we introduce a novel hybrid bi-directional LSTM-XGBoost model for energy community load forecasting that separately forecasts the general load pattern and peak loads, which are later combined to a holistic forecasting model. The hybrid model outperforms traditional energy community load forecasting based on standard load profiles as well as LSTM-based forecasts. Furthermore, we show that the accuracy of energy community day-ahead forecasts can be significantly improved by using smart meter data as additional input features.
The growing global electricity demand and the upcoming integration of charging options for electric vehicles is creating challenges for power grids, such as line over loading. With continuously falling costs for lithium-ion batteries, storage systems represent an alternative to conventional grid reinforcement. This paper proposes an operation strategy for battery energy storage systems, targeted at industrial consumers to achieve both an improvement in the distribution grid and electricity bill savings for the industrial consumer. The objective is to reduce the peak power at the point of common coupling in existing distribution grids by adapting the control of the battery energy storage system at individual industrial consumer sites. An open-source simulation tool, which enables a realistic simulation of the effects of storage systems in different operating modes on the distribution grid, has been adapted as part of this work. Further information on the additional stress on the storage system is derived from a detailed analysis based on six key characteristics. The results show that, with the combined approach, both the local peak load and the global peak load can be reduced, while the stress on the energy storage is not significantly increased. The peak load at the point of common coupling is reduced by 5.6 kVA to 56.7 kVA and the additional stress for the storage system is, on average, for a six month simulation, period only 1.2 full equivalent cycles higher.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.