Performance prediction across platforms is increasingly important as developers can choose from a wide range of execution platforms. The main challenge remains to perform accurate predictions at a low-cost across different architectures.In this paper, we derive an affordable method approaching cross-platform performance translation based on relative performance between two platforms. We argue that relative performance can be observed without running a parallel application in full. We show that it suffices to observe very short partial executions of an application since most parallel codes are iterative and behave predictably manner after a minimal startup period. This novel prediction approach is observation-based. It does not require program modeling, code analysis, or architectural simulation. Our performance results using real platforms and production codes demonstrate that prediction derived from partial executions can yield high accuracy at a low cost. We also assess the limitations of our model and identify future research directions on observationbased performance prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.