This publication is distributed under the terms of Article 25fa of the Dutch Copyright Act (Auteurswet) with explicit consent by the author. Dutch law entitles the maker of a short scientific work funded either wholly or partially by Dutch public funds to make that work publicly available for no consideration following a reasonable period of time after the work was first published, provided that clear reference is made to the source of the first publication of the work. This publication is distributed under The Association of Universities in the Netherlands (VSNU) 'Article 25fa implementation' pilot project. In this pilot research outputs of researchers employed by Dutch Universities that comply with the legal requirements of Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in institutional repositories. Research outputs are distributed six months after their first online publication in the original published version and with proper attribution to the source of the original publication.You are permitted to download and use the publication for personal purposes. Please note that you are not allowed to share this article on other platforms, but can link to it. All rights remain with the author(s) and/or copyrights owner(s) of this work. Any use of the publication or parts of it other than authorised under this licence or copyright law is prohibited. Neither Radboud University nor the authors of this publication are liable for any damage resulting from your (re)use of this publication.If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the ma terial
In profiling side-channel analysis, machine learning-based analysis nowadays offers the most powerful performance. This holds especially for techniques stemming from the neural network family: multilayer perceptron and convolutional neural networks. Convolutional neural networks are often favored as results suggest better performance, especially in scenarios where targets are protected with countermeasures. Multilayer perceptron receives significantly less attention, and researchers seem less interested in this method, narrowing the results in the literature to comparisons with convolutional neural networks. On the other hand, a multilayer perceptron has a much simpler structure, enabling easier hyperparameter tuning and, hopefully, contributing to the explainability of this neural network inner working.We investigate the behavior of a multilayer perceptron in the context of the side-channel analysis of AES. By exploring the sensitivity of multilayer perceptron hyperparameters over the attack's performance, we aim to provide a better understanding of successful hyperparameters tuning and, ultimately, this algorithm's performance. Our results show that MLP (with a proper hyperparameter tuning) can easily break implementations with a random delay or masking countermeasures. This work aims to reiterate the power of simpler neural network techniques in the profiled SCA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.