We determine the graded decompositions of fusion products of finite-dimensional irreducible representations for simple Lie algebras of rank two. Moreover, we give generators and relations for these representations and obtain as a consequence that the Schur positivity conjecture holds in this case. The graded Littlewood-Richardson coefficients in the decomposition are parametrized by lattice points in convex polytopes and an explicit hyperplane description is given in the various types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.