We discuss recent advances in developing a mode-coupling theory of the glass transition (MCT) of two-dimensional systems of active Brownian particles (ABPs). The theory describes the structural relaxation close to the active glass in terms of transient dynamical density correlation functions. We summarize the equations of motion that have been derived for the collective density-fluctuation dynamics and those for the tagged-particle motion. The latter allow to study the dynamics of both passive and active tracers in both passive and active host systems. In the limit of small wave numbers, they give rise to equations of motion describing the mean-squared displacements (MSDs) of these tracers and hence the long-time diffusion coefficients as a transport coefficient quantifying long-range tracer motion. We specifically discuss the case of a single ABP tracer in a glass-forming passive host suspension, a case that has recently been studied in experiments on colloidal Janus particles. We employ event-driven Brownian dynamics (ED-BD) computer simulations to test the ABP-MCT and find good agreement between the two for the MSD, provided that known errors in MCT already for the passive system (i.e., an overestimation of the glassiness of the system) are accounted for by an empirical mapping of packing fractions and host-system self-propulsion forces. The ED-BD simulation results also compare well to experimental data, although a peculiar non-monotonic mapping of self-propulsion velocities is required. The ABP-MCT predicts a specific self-propulsion dependence of the Stokes–Einstein relation between the long-time diffusion coefficient and the host-system viscosity that matches well the results from simulation. An application of ABP-MCT within the integration-through transients framework to calculate the density-renormalized effective swim velocity of the interacting ABP agrees qualitatively with the ED-BD simulation data at densities close to the glass transition and quantitatively for the full density range only after the mapping of packing fractions employed for the passive system. Graphic abstract
In studying solidification process by simulations on the atomic scale, the modeling of crystal nucleation or amorphisation requires the construction of interatomic interactions that are able to reproduce the properties of both the solid and the liquid states. Taking into account rare nucleation events or structural relaxation under deep undercooling conditions requires much larger length scales and longer time scales than those achievable by ab initio molecular dynamics (AIMD). This problem is addressed by means of classical MD simulations using a well established high dimensional neural network potential trained on a relevant set of configurations generated by AIMD. Our dataset contains various crystalline structures and liquid states at different pressures, including their time fluctuations in a wide range of temperatures considering only their energy labels. Applied to elemental aluminium, the resulting potential is shown to be efficient to reproduce the basic structural, dynamics and thermodynamic quantities in the liquid and undercooled states without the need to include neither explicitly the forces nor all kind of configurations in the training procedure. The early stage of crystallization is further investigated on a much larger scale with one million atoms, allowing us to unravel features of the homogeneous nucleation mechanisms in the fcc phase at ambient pressure as well as in the bcc phase at high pressure with unprecedented accuracy close to the ab initio one. In both case, a single step nucleation process is observed.
Electron-positron pair production from vacuum in a strong electric field oscillating in time is studied. The field is assumed to consist of two consecutive pulses, with variable time delay in between. Pair production probabilities are obtained by numerical solution of the corresponding time-dependent Dirac equation. Considering symmetric field configurations comprising two identical pulses, we show that the pulse distance strongly affects the momentum spectra of produced particles and even the total production probability. Conversely, in a highly asymmetric situation when the field contains low-intensity prepulse and high-intensity main pulse, we identify a range of field parameters where the prepulse despite its weakness can leave visible traces in the particle spectra.
We discuss recent advances in developing a mode-coupling theory of the glass transition (MCT) of two-dimensional systems of active Brownian particles (ABP). The theory describes the structural relaxation close to the active glass in terms of transient dynamical density correlation functions. We summarize the equations of motion that have been derived for the collective density-fluctuation dynamics, and those for the tagged-particle motion. The latter allow to study the dynamics of both passive and active tracers in both passive and active host systems. In the limit of small wave numbers, they give rise to equations of motion describing the mean-squared displacements (MSD) of these tracers and hence the long-time diffusion coefficients as a transport coefficient quantifying long-range tracer motion. We specifically discuss the case of a single ABP tracer in a glass-forming passive host suspension; a case that has recently been studied in experiments on colloidal Janus particles. We employ event-driven Brownian dynamics (ED-BD) computer simulations to test the ABP-MCT, and find good agreement between the two for the MSD, provided that known errors in MCT already for the passive system (i.e., an overestimation of the glassiness of the system) are accounted for by an empirical mapping of packing fractions and host-system self propulsion forces. The ED-BD simulation results also compare well to experimental data, although a peculiar non-monotonic mapping of self-propulsion velocities is required. The ABP-MCT predicts a specific self-propulsion dependence of the Stokes-Einstein relation between the long-time diffusion coefficient and the host-system viscosity that matches well the results from simulation. An application of ABP-MCT within the integration-through transients (ITT) framework to calculate the density-renormalized effective swim velocity of the interacting ABP agrees qualitatively with the ED-BD simulation data at densities close to the glass transition, and quantitatively for the full density range only after the mapping of packing fractions employed for the passive system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.