In the context of deductive program verification, ghost code is a part of the program that is added for the purpose of specification. Ghost code must not interfere with regular code, in the sense that it can be erased without observable difference in the program outcome. In particular, ghost data cannot participate in regular computations and ghost code cannot mutate regular data or diverge. The idea exists in the folklore since the early notion of auxiliary variables and is implemented in many state-of-the-art program verification tools. However, ghost code deserves rigorous definition and treatment, and few formalizations exist. In this article, we describe a simple ML-style programming language with mutable state and ghost code. Non-interference is ensured by a type system with effects, which allows, notably, the same data types and functions to be used in both regular and ghost code. We define the procedure of ghost code erasure and we prove its safety using bisimulation. A similar type system, with numerous extensions which we briefly discuss, is implemented in the program verification environment Why3.
We study different formalizations of finite sets in homotopy type theory to obtain a general definition that exhibits both the computational facilities and the proof principles expected from finite sets. We use higher inductive types to define the type K(A) of łfinite sets over type Až à la Kuratowski without assuming that A has decidable equality. We show how to define basic functions and prove basic properties after which we give two applications of our definition.On the foundational side, we use K to define the notions of łKuratowski-finite typež and łKuratowski-finite subobjectž, which we contrast with established notions, e.g., Bishop-finite types and enumerated types. We argue that Kuratowski-finiteness is the most general and flexible one of those and we define the usual operations on finite types and subobjects.From the computational perspective, we show how to use K(A) for an abstract interface for well-known finite set implementations such as tree-and list-like data structures. This implies that a function defined on a concrete finite sets implementation can be obtained from a function defined on the abstract finite sets K(A) and that correctness properties are inherited. Hence, HoTT is the ideal setting for data refinement. Beside this, we define bounded quantification, which lifts a decidable property on A to one on K(A).
In the context of deductive program verification, ghost code is part of the program that is added for the purpose of specification. Ghost code must not interfere with regular code, in the sense that it can be erased without observable difference in the program outcome. In particular, ghost data cannot participate in regular computations and ghost code cannot mutate regular data or diverge. The idea exists in the folklore since the early notion of auxiliary variables and is implemented in many state-of-the-art program verification tools. However, a rigorous definition and treatment of ghost code is surprisingly subtle and few formalizations exist.In this article, we describe a simple ML-style programming language with mutable state and ghost code. Non-interference is ensured by a type system with effects, which allows, notably, the same data types and functions to be used in both regular and ghost code. We define the procedure of ghost code erasure and we prove its safety using bisimulation. A similar type system, with numerous extensions which we briefly discuss, is implemented in the program verification environment Why3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.