Additive manufacturing of catalyst and sorbent materials promises to unlock large design freedom in the structuring of these materials, and could be used to locally tune porosity, shape and resulting parameters throughout the reactor along both the axial and transverse coordinates. This contrasts catalyst structuring by conventional methods, which yields either very dense randomly packed beds or very open cellular structures. Different 3D-printing processes for catalytic and sorbent materials exist, and the selection of an appropriate process, taking into account compatible materials, porosity and resolution, may indeed enable unbounded options for geometries. In this review, recent efforts in the field of 3D-printing of catalyst and sorbent materials are discussed. It will be argued that these efforts, whilst promising, do not yet exploit the full potential of the technology, since most studies considered small structures that are very similar to structures that can be produced through conventional methods. In addition, these studies are mostly motivated by chemical and material considerations within the printing process, without explicitly striving for process intensification. To enable value-added application of 3D-printing in the chemical process industries, three crucial requirements for increased process intensification potential will be set out: i) the production of mechanically stable structures without binders; ii) the introduction of local variations throughout the structure; and iii) the use of multiple materials within one printed structure.
The concept of liquid metal membranes for hydrogen separation, based on gallium or indium, was recently introduced as an alternative to conventional palladium-based membranes. The potential of this class of gas separation materials was mainly attributed to the promise of higher hydrogen diffusivity. The postulated improvements are only beneficial to the flux if diffusion through the membrane is the rate-determining step in the permeation sequence. Whilst this is a valid assumption for hydrogen transport through palladium-based membranes, the relatively low adsorption energy of hydrogen on both liquid metals suggests that other phenomena may be relevant. In the current study, a microkinetic modeling approach is used to enable simulations based on a five-step permeation mechanism. The calculation results show that for the liquid metal membranes, the flux is limited by the dissociative adsorption over a large temperature range, and that the membrane flux is expected to be orders of magnitude lower compared to the membrane flux through pure palladium membranes. Even when accounting for the lower cost of the liquid metals compared to palladium, the latter still outperforms both gallium and indium in all realistic scenarios, in part due to the practical difficulties associated with making liquid metal thin films.
3D-printed catalyst
structures have the potential to broaden reactor
operating windows. However, the hydrodynamic aspects associated with
these novel catalyst structures have not yet been quantified in detail.
This work applies a recently introduced noninvasive, instantaneous,
whole-field concentration measurement technique based on infrared
transmission to quantify the rate of transverse gas dispersion in
3D-printed logpile structures. Twenty-two structural variations have
been investigated at various operating conditions, and the measured
transverse gas dispersion has been correlated to the Péclet
number and the structures’ porosity and feature size. It is
shown that staggered configurations of these logpile structures offer
significantly more tunability of the dispersion behavior compared
to straight structures. The proposed correlations can be used to facilitate
considerations of reactor design and operating windows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.