Vehicle integrated photovoltaic (VIPV) systems have much different requirements on maximum power tracking compared to stationary setups. The occurrence of fast changes between full irradiance and shading are demanding. To evaluate the specific impact of these conditions on the specifications of VIPV systems, we conduct high resolution measurements of the incident irradiance onto a car body while driving.We investigate the influence of environmental conditions like weather, season and building density in an urban environment on measured irradiance on the roof and the sides of a vehicle. We find that weather conditions have the highest impact on the measured irradiance on the roof, while the relative irradiance on the side depends more heavily on the season. We also find that changes in irradiance occur predominantly at frequencies below 1 Hz, but changes with 100 Hz or more can occur in certain situations, with a tendency toward higher frequencies for sunny weather. This must be considered in maximum power point tracker design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.