The tyrosinase gene from Ralstonia solanacearum (GenBank NP518458) was subjected to random mutagenesis resulting in tyrosinase variants (RVC10 and RV145) with up to 3.2-fold improvement in k(cat), 5.2-fold lower K(m) and 16-fold improvement in catalytic efficiency for D-tyrosine. Based on RVC10 and RV145 mutated sequences, single mutation variants were generated with all variants showing increased k(cat) for D-tyrosine compared to the wild type (WT). All single mutation variants based on RV145 had a higher k(cat) and K(m) value compared to the RV145 and thus the combination of four mutations in RV145 was antagonistic for turnover, but synergistic for affinity of the enzyme for D-tyrosine. Single mutation variant 145_V153A exhibited the highest (6.9-fold) improvement in k(cat) and a 2.4-fold increase in K(m) compared to the WT. Two single mutation variants, C10_N322S and C10_T183I reduced the K(m) up to 2.6-fold for D-tyrosine but one variant 145_V153A increased the K(m) 2.4-fold compared to the WT. Homology based modeling of R. solanacearum tyrosinase showed that mutation V153A disrupts the van der Waals interactions with an α-helix providing one of the conserved histidine residues of the active site. The k(cat) and K(m) values for L-tyrosine decreased for RV145 and RVC10 compared to the WT. RV145 exhibited a 2.1-fold high catalytic efficiency compared to the WT which is a 7.6-fold lower improvement compared to D-tyrosine. RV145 exhibited a threefold higher monophenolase:diphenolase activity ratio for D-tyrosine:D-DOPA and a 1.4-fold higher L-tyrosine:L-DOPA activity ratio compared to the WT.
Two melanin-overproducing Pseudomonas putida F6 mutants were generated using transposon (Tn5) mutagenesis. Mutants were disrupted in a transcriptional regulator (TR) and a homogentisate 1,2-dioxygenase (HDO) gene. Colonies of mutant F6-TR overproduced a black pigment on solid medium. The same mutant (F6-TR) had a 3.7-fold higher tyrosinase activity compared with the wild-type strain when induced with ferulic acid. However in tyrosine uptake assays whole cells of the mutant strain F6-TR consumed eight times less tyrosine compared with the wild-type strain. Mutant F6-HDO produced a diffusible red pigment into the growth medium. Pigment production by mutant F6-HDO is sixfold higher than the wild-type strain. The biomass yield of mutant F6-HDO grown on tyrosine as the sole source of carbon and energy was 1.2-fold lower than the wild-type strain. While the growth of the wild-type strain was completely inhibited by 5 min of exposure to UV light (254 nm) both mutant strains showed survival rates >30%. Mutant F6-HDO was able to tolerate higher concentrations of hydrogen peroxide (H(2)O(2)) exhibiting 1.5 times smaller zones of inhibition at 10 mM H(2)O(2) compared with mutant F6-TR and the wild-type strain. The pigments produced by all strains were purified and confirmed to be melanins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.