If conservation of biodiversity is the goal, then the protected areas network of the continental US may be one of our best conservation tools for safeguarding ecological systems (i.e., vegetation communities). We evaluated representation of ecological systems in the current protected areas network and found insufficient representation at three vegetation community levels within lower elevations and moderate to high productivity soils. We used national-level data for ecological systems and a protected areas database to explore alternative ways we might be able to increase representation of ecological systems within the continental US. By following one or more of these alternatives it may be possible to increase the representation of ecological systems in the protected areas network both quantitatively (from 10% up to 39%) and geographically and come closer to meeting the suggested Convention on Biological Diversity target of 17% for terrestrial areas. We used the Landscape Conservation Cooperative framework for regional analysis and found that increased conservation on some private and public lands may be important to the conservation of ecological systems in Western US, while increased public-private partnerships may be important in the conservation of ecological systems in Eastern US. We have not assessed the pros and cons of following the national or regional alternatives, but rather present them as possibilities that may be considered and evaluated as decisions are made to increase the representation of ecological systems in the protected areas network across their range of ecological, geographical, and geophysical occurrence in the continental US into the future.
a b s t r a c t a r t i c l e i n f oA crucial gap exists between the static nature of the United States' existing protected areas and the dynamic impacts of 21st century stressors, such as habitat loss and fragmentation and climate change. Connectivity is a valuable element for bridging that gap and building the ecological resilience of existing protected areas. However, creating terrestrial connectivity by designing individual migration corridors across fragmented landscapes is arguably untenable at a national scale. We explore the potential for use of riverine corridors in a Riparian Connectivity Network (RCN) as a potential contributor to a more resilient network of protected areas. There is ample scientific support for the conservation value of riparian areas, including their habitat, their potential to connect environments, and their ecosystem services. Our spatial analysis suggests that they could connect protected areas and have a higher rate of conservation management than terrestrial lands. Our results illustrate that the spatial backbone for an RCN is already in place, and existing policies favor riparian area protection. Furthermore, existing legal and regulatory goals may be better served if governance requirements and incentives are aligned with conservation efforts focused on riparian connectivity, as part of a larger landscape connectivity strategy. While much research on the effectiveness of riparian corridors remains to be done, the RCN concept provides a way to improve connectivity among currently protected areas. With focused attention, increased institutional collaboration, and improved incentives, these pieces could coalesce into a network of areas for biological conservation.
Background: Distributional responses by alpine taxa to repeated, glacial-interglacial cycles throughout the last two million years have signi cantly in uenced the spatial genetic structure of populations. These effects have been exacerbated for the American pika (Ochotona princeps), a small alpine lagomorph constrained by thermal sensitivity and a limited dispersal capacity. As a species of conservation concern, long-term lack of gene ow has important consequences for landscape genetic structure and levels of diversity within populations. Here, we use reduced representation sequencing (ddRADseq) to provide a genome-wide perspective on patterns of genetic variation across pika populations representing distinct subspecies. To investigate how landscape and environmental features shape genetic variation, we collected genetic samples from distinct geographic regions as well as across ner spatial scales in two geographically proximate mountain ranges of eastern Nevada. Results: Our genome-wide analyses corroborate range-wide, mitochondrial subspeci c designations and reveal pronounced ne-scale population structure between the Ruby Mountains and East Humboldt Range of eastern Nevada. Populations in Nevada were characterized by low genetic diversity (=0.0006-0.0009; W =0.0005-0.0007) relative to populations in California (=0.0014-0.0019; W =0.0011-0.0017) and the Rocky Mountains (=0.0025-0.0027; W =0.0021-0.0024), indicating substantial genetic drift in these isolated populations. Tajima's D was positive for all sites (D=0.240-0.811), consistent with recent contraction in population sizes range-wide. Conclusions: Substantial in uences of geography, elevation and climate variables on genetic differentiation were also detected and may interact with the regional effects of anthropogenic climate change to force the loss of unique genetic lineages through continued population extirpations in the Great Basin and Sierra Nevada.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.