The titanium dioxide nanoparticles (NPs) have been applied to biomedical, pharmaceutical, and food additive fields. However, the effect on health and the environment are conflicting; thus, it has been reviewing several times. In this context, establishing standard robust protocols for detecting cytotoxicity and genotoxicity of nanomaterials became essential for nanotechnology development. The cell type and the intrinsic characteristics of titanium dioxide NPs can influence nanotoxicity. In this work, the cyto- and genotoxicity effects of standard reference material titanium dioxide NPs in primary bovine fibroblasts and immortalized Chinese hamster ovary epithelial (CHO) cells were determined and compared for the first time. Titanium dioxide NPs exposure revealed no cytotoxicity for primary bovine fibroblasts, while only higher concentrations tested (10 μg/ml) induce genotoxic effects in this cell model. In contrast, the lower concentrations of the titanium dioxide NPs cause the cyto- and genotoxic effects in CHO cells. Therefore, our finding indicates that the CHO line was more sensitive toward the effects of titanium dioxide NPs than the primary bovine fibroblast, which should be valuable for their environmental risk assessment.
Direitos para esta edição cedidos à Atena Editora pelos autores. Open access publication by Atena Editora Todo o conteúdo deste livro está licenciado sob uma Licença de Atribuição Creative Commons. Atribuição-Não-Comercial-NãoDerivativos 4.0 Internacional (CC BY-NC-ND 4.0).
Natural polymeric nanobiocomposites hold promise in repairing damaged bone tissue in tissue engineering. These materials create an extracellular matrix-like microenvironment that induces stem cell differentiation. In this study, we investigated a new cytocompatible nanobiocomposite made from cotton cellulose nanofibers combined with chitosan polymer to induce osteogenic stem cell differentiation. First, we characterized the chemical composition, nanotopography, swelling properties, and mechanical properties of the cotton cellulose nanofiber/chitosan nanobiocomposite scaffold. Then, we examined the biological characteristics of the nanocomposites to evaluate their cytocompatibility and osteogenic differentiation potential using human mesenchymal stem cells derived from exfoliated deciduous teeth. The results showed that the nanobiocomposite exhibited favorable cytocompatibility and promoted osteogenic differentiation of cells without the need for chemical inducers, as demonstrated by the increase in alkaline phosphatase activity and extracellular matrix mineralization. Therefore, the cotton cellulose nanofiber/chitosan nanobiocomposite scaffold holds great promise for bone tissue engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.