This study presents an optimization technique and design for a stand-alone photovoltaic (PV) system to provide the required electricity for a single residential household in remote areas. From the basic solar components analysis, the irradiance on tilted surface is derived and compared to that on horizontal surface for Furu-Awa locality to infer the appropriate tilt angle (β) that maximizes the collection of solar energy. Seven optimum values of β applicable to the PV network were then derived depending of the period of the year and this simulation resulted that the panels are to be adjusted seven times a year. The optimization technique for load demand based on total apparent power of the household appliances produces an increase of 18% compared to the simple case of the PV components design using active power but leads to the optimum configuration that meets the real load demand of the household. Following the sizing of the station, reliability tests simulations were conducted for a one year corresponding period to infer the sensitivity of power supply to initial state of charge, to check the system autonomy and to evaluate the effect of random variation of the load on the smooth functioning of the PV system using a pseudo random number generator. This analysis shows that the minimum capacity of the battery for normal run of the Plan is 22.2% and that with random fluctuation of load, there will be periods of the year where the system experiences power failure depending on how important is the variation. The result of the study may imply a small increase in the cost of the entire plant but improves the stability and flexibility of such a station.
Atmospheric analysis data from the European Center for Medium-Range Weather Forecasts (ECMWF) have been acquired and are used to characterize the meteorological situation in Maroua, Cameroon (10.614 • N, 14.361 • E) at 12:00 UTC. These are then used to simulate downward global solar radiation (DGSR) with the moderate-resolution transmittance (MODTRAN) radiative transfer code (RTC). In comparison with meteorological data measured during the year 2014 in Maroua, ECMWF atmospheric quantities at ground level, in general, showed good correlation coefficients and slight differences. It is shown that ECMWF atmospheric profiles can thus be used to complete the scarce atmospheric data and to study the atmosphere state and dynamics, such as the African monsoon phenomenon detected in this region, which regulates the rainy season. In addition, they are more suitable to simulate clear-sky DGSR compared to MODTRAN standard atmospheric profiles. The causes and effects of the substantial bias and weak correlation coefficient observed with ECMWF wind data and the constant underestimation of simulated DGSR in comparison with ground-based measurements are investigated. The paper emphasizes the need for a better characterization of the Maroua atmosphere state and dynamics as well as the simulation of more accurate and reliable DGSR under any atmospheric conditions.
This work presents the results of the characterization of a standalone photovoltaic system for the electrification of a household located in rural area in the western region of Cameroon: Nziih-Bafou in Dschang (5.35˚N, 10.05˚E and 1900 m). In order to cope with the maintenance charges and reduce the investment cost, a small mill was added to the appliances of the household for income generation. The assessment of the energy demand was made by taking into account the reactive energy due to the heavy consumption of energy by the mill's motor, especially during ignition. The sizing of all the system's components was carried out with the prospect of determining an optimum design in accordance with daily electricity demand, site irradiance profile and climatic conditions. In this context, tilt angles applicable to the PV structure and that allow to receive the maximum irradiance as a function of the periods of the year were determined using the Hay model. This approach provides the system with incident irradiance greater than or at the limit equal to that received by a horizontal surface on the same site compared to the case of a single tilt angle where the irradiance on the inclined plane is often lower than that on the horizontal. The economic analysis of the PV system showed an
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.