Microvascular ingrowth into damaged tissue is an essential component of the normal healing process. In fact, wound therapy is often aimed at promoting neovascularization. However, little is known about the mechanisms that regulate microvascular ingrowth into a healing wound. This limited knowledge is largely due to the lack of adequate models in which microvascular ingrowth can be quantitatively analyzed throughout the healing process. To address this deficiency, we developed a model in which a wound was created on the ear of the hairless mouse-a well established model for directly viewing and measuring skin microcirculation. While the animals were under ketamine and xylazine anesthesia, 2.25 mm diameter full-thickness wounds were created on the dorsum of hairless mouse ears down to but not including the cartilage (0.125 mm depth). With the use of video microscopy and computer-assisted digitized planimetry, the precise epithelial and neovascular wound edge was viewed and measured regularly throughout healing. Therefore, this model can provide objective data on wound epithelialization and neovascularization throughout healing. This model was used to examine the effect of topical wound agents on epithelialization and neovascularization. Differential effects by these anti-microbial agents on these two processes were observed, which suggests clinical implications for their use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.