The prevalence of obesity in the United States remains high, exceeding 30% in most states. As this trend continues unhindered, we will continue see a persistent rise in obesity-related metabolic effects—hypertension, dyslipidemia, diabetes mellitus, and atherosclerosis. These diseases are also the leading causes of chronic kidney diseases and end-stage renal disease. The lipid nephrotoxicity hypothesis, proposed over three decades ago, suggested that proteinuria, decreased albumin levels, and the resultant hyperlipidemia may cause a glomerulosclerosis similar to atherosclerosis. More recent studies have demonstrated the role of oxidized high-density lipoprotein (HDL) and low-density lipoprotein (LDL) particles in the progression of kidney disease. Elucidation of the role of lipid-lowering therapies and the concomitant improvement in tubulointerstitial and glomerular diseases is a further evidence of the role of lipids in renal injury. Synergistic effects of lipid-lowering drugs and blockers of the renin-angiotensin-aldosterone system (RAAS) in renal protection have also been documented. Dyslipidemia in renal disease is usually characterized by elevated LDL cholesterol, low HDL cholesterol, and high triglycerides. After an initial glomerular injury, likely to be inflammatory, a series of self-perpetuating events occur. Increased glomerular basement permeability leads to loss of lipoprotein lipase activators, which results in hyperlipidemia. Circulating LDL has a charge affinity for glycoaminoglycans in the glomerular basement membrane and further increases its permeability. Substantial amounts of filtered lipoprotein cause proliferation of mesangial cells. Proximal tubules reabsorb some of the filtered lipoprotein, and the remainder is altered during passage through the nephron. If intraluminal pH is close to the isoelectric point of the apoprotein, luminal apoprotein will precipitate, causing tubulointerstitial disease. This review shows the evidence for the role of lipids in development of chronic renal disease, the pathophysiology of lipid nephrotoxicity, and strategies available to clinicians to slow the progression of disease.
Addition of a modest dose of spironolactone to a regimen of ACEI or ARB in patients with diabetic proteinuria causes further reduction in proteinuria and also lowers the systolic BP. As with ACEI or ARB, spironolactone modestly reduces the glomerular filtration rate and raises serum potassium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.