We present effective methods to compute equivariant harmonic maps from the universal cover of a surface into a nonpositively curved space. By discretizing the theory appropriately, we show that the energy functional is strongly convex and derive convergence of the discrete heat flow to the energy minimizer, with explicit convergence rate. We also examine center of mass methods, after showing a generalized mean value property for harmonic maps. We feature a concrete illustration of these methods with Harmony, a computer software that we developed in C++, whose main functionality is to numerically compute and display equivariant harmonic maps.
Abstract. The Poisson-Nernst-Planck system of equations used to model ionic transport is interpreted as a gradient flow for the Wasserstein distance and a free energy in the space of probability measures with finite second moment. A variational scheme is then set up and is the starting point of the construction of global weak solutions in a unified framework for the cases of both linear and nonlinear diffusion. The proof of the main results relies on the derivation of additional estimates based on the flow interchange technique developed by Matthes, McCann, and Savaré in [25].
In this article we set up a splitting variant of the Jordan-Kinderlehrer-Otto scheme in order to handle gradient flows with respect to the Kantorovich-Fisher-Rao metric, recently introduced and defined on the space of positive Radon measure with varying masses. We perform successively a time step for the quadratic Wasserstein/Monge-Kantorovich distance, and then for the Hellinger/Fisher-Rao distance. Exploiting some inf-convolution structure of the metric we show convergence of the whole process for the standard class of energy functionals under suitable compactness assumptions, and investigate in details the case of internal energies. The interest is double: On the one hand we prove existence of weak solutions for a certain class of reaction-advection-diffusion equations, and on the other hand this process is constructive and well adapted to available numerical solvers.1991 Mathematics Subject Classification. 35K15, 35K57, 35K65, 47J30 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.