This paper describes a new approach to automate the classification of solid models using machine learning techniques. Existing approaches, based on group technology, fixed matching algorithms or pre-defined feature sets, impose a priori categorization schemes on engineering data or require significant human labeling of design data. This paper describes a shape learning algorithm and a general technique for "teaching" the algorithm to identify new or hidden classifications that are relevant in many engineering applications. In this way, the core shape learning algorithm can be used to find a wide variety of model classifications based on user input and training data. This allows for great flexibility in search and data mining of engineering data.
This paper describes a new approach to automate the classification of solid models using machine learning techniques. Existing approaches, based on group technology, fixed matching algorithms or pre-defined feature sets, impose a priori categorization schemes on engineering data or require significant human labeling of design data. This paper describes a shape learning algorithm and a general technique for "teaching" the algorithm to identify new or hidden classifications that are relevant in many engineering applications. In this way, the core shape learning algorithm can be used to find a wide variety of model classifications based on user input and training data. This allows for great flexibility in search and data mining of engineering data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.