Background: In this work, a nanostructured guided-mode resonance filter matrix with high transmission efficiency and narrow bandwidth is demonstrated. The developed nano-filter arrays have various usages, e.g., combined with the CMOS image sensors to realize compact spectrometers for biomedical sensing applications. Methods: In order to optimize the filter performance, the spectral responses of filters with different structural parameters are carefully studied based on the variable-controlling method. A quality factor is carried out for quantitative characterization. Results: In this case, a high fill factor of 0.9 can strongly suppress sidebands, while buffer layer thickness can be adjusted to mainly control the bandwidth. The transmission peaks shift from 386 nm to 1060 nm with good linearity when periods vary from 220 nm to 720 nm. The incident angle dependence is simulated to be~1.1 nm/degree in ±30°range. The filters are then fabricated and characterized. The results obtained from both simulations and experiments agree well, where the filters with the period of 352 nm exhibit simulated and measured transmission peaks of 564 nm and 536 nm, the FWHM of 13 nm and 17 nm, respectively. In terms of metal material, besides aluminum, silver is also investigated towards optimization of the transmission efficiency. Conclusion: The transmission spectra of designed filters have high transmission and low sideband; its peaks cover the whole visible and near infrared range. These characteristics allow them to have the possibility to be integrated into image sensors for spectrometer applications.
In this work, a novel multispectral sensing system consisting of nanostructured filter matrix and a charge-coupled device (CCD)-based image sensor has been developed to overcome the limitation of the conventional pigment filtered sensors, which are difficult to be fabricated at a microscale and usually showing a pronounced degradation. By designing the filters in guided-mode resonance (GMR) architecture, light transmission efficiencies of ~90% with low sidebands and sharp peaks can be obtained, which are critical characteristics for realizing precise optical measurement systems. To optimize the transmission functions, various materials and structural parameters have been simulated. Electron beam nanolithography is employed in the device fabrication to fabricate pixel-wise independent filter functions. After being characterized in terms of their wavelength filtering capability, the developed GMR filters are then combined with image sensors, particularly for addressing biological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.