When using a greedy algorithm for finding a model, as is the case in many data mining algorithms, there is a risk of getting caught in local extrema, i.e., suboptimal solutions. Widening is a technique for enhancing greedy algorithms by using parallel resources to broaden the search in the model space. The most important component of widening is the selector, a function that chooses the next models to refine. This selector ideally enforces diversity within the selected set of models in order to ensure that parallel workers explore sufficiently different parts of the model space and do not end up mimicking a simple beam search. Previous publications have shown that this works well for problems with a suitable distance measure for the models, but if no such measure is available, applying widening is challenging. In addition these approaches require extensive, sequential computations for diverse subset selection, making the entire process much slower than the original greedy algorithm. In this paper we propose the bucket selector, a model-independent randomized selection strategy. We find that (a) the bucket selector is a lot faster and not significantly worse when a diversity measure exists and (b) it performs better than existing selection strategies in cases without a diversity measure.
Originally developed as a query language for XML databases, XQuery has evolved into a complete functional programming language. In order to unlock all optimization opportunities, XQuery processors therefore need to combine traditional query optimization with techniques used in optimizing compilers. In this paper, we discuss how the well-known technique of function inlining can be applied to XQuery. We present an implementation of function inlining based on the query processor of BaseX, an open-source XML database. Finally, a detailed quantitative evaluation demonstrates that the performance benefits obtained by blending compiler and query optimizer techniques surpass results from any one single technique.
Reachability, distance, and shortest path queries are fundamental operations in the field of graph data management with various applications in research and industry. However, while various preprocessing-based methods have been proposed to optimize the computation of such queries, the integration of existing methods into graph database management systems and processing frameworks has been limited. In this paper, we present an implementation of a static graph index that employs landmark embedding for Neo4j, to enable the index-based computation of reachability, distance, and shortest path queries on the database. We explore different strategies for selecting landmarks and different schemes for storing the precomputed landmark distances. To evaluate the efficiency of each landmark selection strategy and each storage scheme, we conduct an experimental evaluation using four real-world network datasets. We measure the preprocessing cost, the query processing time, and the accuracy of the distance estimation of different configurations of our index structure.
Processing shortest path queries is a basic operation in many graph problems. Both preprocessing-based and batch processing techniques have been proposed to speed up the computation of a single shortest path by amortizing its costs. However, both of these approaches suffer from limitations. The former techniques are prohibitively expensive in situations where the precomputed information needs to be updated frequently due to changes in the graph, while the latter require coordinates and cannot be used on non-spatial graphs. In this paper, we address both limitations and propose novel techniques for batch processing shortest paths queries using landmarks. We show how preprocessing can be avoided entirely by integrating the computation of landmark distances into query processing. Our experimental results demonstrate that our techniques outperform the state of the art on both spatial and non-spatial graphs with a maximum speedup of 3.61× in online scenarios. CCS CONCEPTS• Information systems → Database query processing; • Theory of computation → Shortest paths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.