Stereotactic guided laser-induced interstitial thermotherapy (SLITT) represents a minimal invasive method to produce necrosis in cerebral tumor tissue by local heating. The dose/response relationship relies on experimental studies and few clinical data performed in high field MR systems. A better understanding of the energy-dose/tissue response in human brain tumors is important to optimize this treatment modality. Twenty-four patients with gliomas were treated with SLITT, with a total of 30 laser procedures performed. Under local anesthesia 600 microns laser-fibers were inserted by stereotactic-guided technique into the center of the tumor. In a low field open MR system (0.2 T) the denaturation of the tumor using a neodymium YAG laser (1064 nm) was monitored by 3D-turbo FLASH T1-weighted sequences. Laser energy was applied in steps of 400 to 1200 Joules. Development of necrosis at a mean total energy dose of 2979 Joules could be monitored in all procedures. Two different thermal lesion architectures were observed. First signal changes were monitored after a mean of 1108 Joules and 1393 Joules, respectively. Mean max. total lesion size was 21.2 mm. The higher the total energy the larger was the thermolesion, but no linear relationship could be seen. Tumor tissue response showed no dependency on tumor grading. Monitoring of stereotactic guided laser-induced thermolesions in the low-power MR OPEN is feasible and safe. Although lesion size basically is energy dependent, it should be applied individually, since the thermal response in brain tumors varies due to different optical properties, even in the same tumor gradings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.