We address the estimation of the loss parameter of a bosonic channel probed by arbitrary signals. Unlike the optimal Gaussian probes, which can attain the ultimate bound on precision asymptotically either for very small or very large losses, we prove that Fock states at any fixed photon number saturate the bound unconditionally for any value of the loss. In the relevant regime of low-energy probes, we demonstrate that superpositions of the first low-lying Fock states yield an absolute improvement over any Gaussian probe. Such few-photon states can be recast quite generally as truncations of de-Gaussified photon-subtracted states
We investigate the non-Markovianity of continuous-variable Gaussian quantum channels through the evolution of an operational metrological quantifier, namely, the Gaussian interferometric power, which captures the minimal precision that can be achieved using bipartite Gaussian probes in a black-box phase estimation setup, where the phase shift generator is a priori unknown. We observe that the monotonicity of the Gaussian interferometric power under the action of local Gaussian quantum channels on the ancillary arm of the bipartite probes is a natural indicator of Markovian dynamics; consequently, its breakdown for specific maps can be used to construct a witness and an effective quantifier of non-Markovianity. In our work, we consider two paradigmatic Gaussian models, the damping master equation and the quantum Brownian motion, and identify analytically and numerically the parameter regimes that give rise to non-Markovian dynamics. We then quantify the degree of non-Markovianity of the channels in terms of Gaussian interferometric power, showing, in particular, that even nonentangled probes can be useful to witness non-Markovianity. This establishes an interesting link between the dynamics of bipartite continuous-variable open systems and their potential for optical interferometry. The results are an important supplement to the recent research on characterization of non-Markovianity in continuous-variable systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.