The Internet architecture has been undergoing a significant refactoring, where the past preeminence of transit providers has been replaced by content providers, which have a ubiquitous presence throughout the world, seeking to improve the user experience, bringing content closer to its final recipients. This restructuring is materialized in the emergence of Massive Scale Data Centers (MSDC) worldwide, which allows the implementation of the Cloud Computing concept. MSDC usually deploy Fat-Tree topologies, with constant bisection bandwidth among servers and multi-path routing. To take full advantage of such characteristics, specific routing protocols are needed. Multi-path routing also calls for revision of transport protocols and forwarding policies, also affected by specific MSDC applications’ traffic characteristics. Experimenting over these infrastructures is prohibitively expensive, and therefore, scalable and realistic experimentation environments are needed to research and test solutions for MSDC. In this paper, we review several environments, both single-host and distributed, which permit analyzing the pros and cons of different solutions.
Massive scale data centers (MSDC) have become a key component of current content-centric Internet architecture. With scales of up to hundreds of thousands servers, conveying traffic inside these infrastructures requires much greater connectivity resources than traditional broadband Internet transit networks. MSDCs use Fat-Tree type topologies, which ensure multipath connectivity and constant bisection bandwidth between servers. To properly use the potential advantages of these topologies, specific routing protocols are needed, with multipath support and low control messaging load. These infrastructures are enormously expensive, and therefore it is not possible to use them to experiment with new protocols; that is why scalable and realistic emulation/simulation environments are needed. Based on previous experiences, in this paper we present extensions to the ns-3 network simulator that allow executing the Free Range Routing (FRR) protocol suite, which support some of the specific MSDC routing protocols. Focused on the Border Gateway Protocol (BGP), we run a comprehensive set of control plane experiments over Fat-Tree topologies, achieving competitive scalability running on a single-host environment, which demonstrates that the modified ns-3 simulator can be effectively used for experimenting in the MSDC. Moreover, the validation was complemented with a theoretical analysis of BGP behavior over selected scenarios. The whole project is available to the community and fully reproducible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.