Quantum communications promises reliable transmission of quantum information, efficient distribution of entanglement and generation of completely secure keys. For all these tasks, we need to determine the optimal point-to-point rates that are achievable by two remote parties at the ends of a quantum channel, without restrictions on their local operations and classical communication, which can be unlimited and two-way. These two-way assisted capacities represent the ultimate rates that are reachable without quantum repeaters. Here, by constructing an upper bound based on the relative entropy of entanglement and devising a dimension-independent technique dubbed ‘teleportation stretching', we establish these capacities for many fundamental channels, namely bosonic lossy channels, quantum-limited amplifiers, dephasing and erasure channels in arbitrary dimension. In particular, we exactly determine the fundamental rate-loss tradeoff affecting any protocol of quantum key distribution. Our findings set the limits of point-to-point quantum communications and provide precise and general benchmarks for quantum repeaters.
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first-and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources.
We review recent results on the simulation of quantum channels, the reduction of adaptive protocols (teleportation stretching), and the derivation of converse bounds for quantum and private communication, as established in PLOB [Pirandola, Laurenza, Ottaviani, Banchi, arXiv:1510.08863]. We start by introducing a general weak converse bound for private communication based on the relative entropy of entanglement. We discuss how combining this bound with channel simulation and teleportation stretching, PLOB established the two-way quantum and private capacities of several fundamental channels, including the bosonic lossy channel. We then provide a rigorous proof of the strong converse property of these bounds by adopting a correct use of the Braunstein-Kimble teleportation protocol for the simulation of bosonic Gaussian channels. This analysis provides a full justification of claims presented in the follow-up paper WTB [Wilde, Tomamichel, Berta, arXiv:1602.08898] whose upper bounds for Gaussian channels would be otherwise infinitely large. Besides clarifying contributions in the area of channel simulation and protocol reduction, we also present some generalizations of the tools to other entanglement measures and novel results on the maximum excess noise which is tolerable in quantum key distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.