Purpose Surface texturing can improve the tribological performance of contacting sliding surfaces under different contact and lubrication conditions, which has been proved both numerically and experimentally. This study aims to suggest a new methodology to evaluate the tribological behavior of textured surfaces using an adapted pendular scratch tester. Design/methodology/approach A Charpy-type tester was adapted to meet conditions that are relevant for sliding surfaces. The test rig was used to evaluate low carbon steel textured surfaces produced via maskless electrochemical texturing. The textures were composed of 100 pockets with an average diameter of 200 µm of and variable average depths (1.5, 3.5 and 7 µm). The tests were performed under dry and lubricated conditions for smooth and textured surfaces. The lubricated tests simulated a starved condition by applying a drop of lubricant. Findings For starved lubrication, surface texturing reduced the sliding energy when compared with smooth surfaces. This was attributed to the pocket’s ability to provide an additional supply of lubricant, as well as a reduced amount of plastic deformation around the pockets during sliding of the indenter. However, under dry sliding conditions, no significant effect of surface texturing was detected. Originality/value A new evaluation methodology was proposed, using single-pass pendular sliding of a spherical indenter to measures the energy absorbed during sliding, which was referred to as sliding energy. The measurements are repeatable and can detect sliding energy differences between smooth and textured surfaces.
Surface texturing can improve lubrication and entrap wear debris but increases the effective roughness of the surfaces, which can induce higher contact pressures. On the one hand, this can be detrimental, but on the other hand, the increase in contact pressure could be used to activate the formation of a ZDDP tribofilm from fully-formulated lubricants. This work investigates the synergistic effect between surface texturing via Maskless Electrochemical Texturing (MECT) and ZDDP additive. The surface texture consisted of an array of annular pockets manufactured on a gray cast iron cylinder liner. These textured surfaces were evaluated by scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX). The results indicated that surface texturing via MECT changes the chemical composition of the surfaces, by inducing a preferential dissolution of the metal matrix. Consequently, it exposed the carbon present in the material. The tribological performance was evaluated by a ring-on-cylinder-liner tribometer in reciprocating sliding under boundary lubrication conditions using both a base oil and a commercial formulated oil containing ZDDP additive. For comparison, a commercially honed liner was also tested. After the tribological tests, the surfaces were evaluated by white light interferometry and SEM/EDX. Although the textured surfaces showed higher friction, they induced more ZDDP-tribofilm formation than conventional cylinder liner finish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.