Resumo-Algoritmos de filtragem adaptativa apresentam comprometimento da aprendizagem na presença de ruído aditivo, seja no sinal de referência, seja no sinal de entrada. Este artigo combina duas estratégias-reúso de coeficientes e compensação de viés-para obter algoritmos robustos para ambos os tipos de ruído. Tais algoritmos são capazes de melhorar significativamente o desempenho em regime estacionário sem implicar uma perda significativa na taxa de convergência. Melhorias no algoritmo resultante (redução do custo computacional e aumento da taxa de convergência) se mostraram possíveis através do recurso a fatores de reúso variáveis no tempo.
Noise is an ubiquitous phenomenon that hampers adaptive filteringbased system identification procedures. Recently, the coefficient reuse strategy has been proposed to address the challenging case where the signal-to-noise ratio is low. In this Letter, a new derivation approach that incorporates both coefficient reusing (which reduces the oscillation magnitude of each adaptive coefficient) and norm-constrained adaptation (that penalises non-sparse solutions) is advanced. The proposed algorithm performs relaxed projections into hyperplanes of interest in order to obtain the desired robustness and high convergence rate in sparse scenarios with low computation burden and reduced number of adjustable parameters. The resulting method can be implemented in both normalised and non-normalised versions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.