The vascular endothelial growth factor (VEGF), a homodimeric vasoactive glycoprotein, is the key mediator of angiogenesis. Angiogenesis, the formation of new blood vessels, is responsible for a wide variety of physio/pathological processes, including cardiovascular diseases (CVD). Cardiomyocytes (CM), the main cell type present in the heart, are the source and target of VEGF-A and express its receptors, VEGFR1 and VEGFR2, on their cell surface. The relationship between VEGF-A and the heart is double-sided. On the one hand, VEGF-A activates CM, inducing morphogenesis, contractility and wound healing. On the other hand, VEGF-A is produced by CM during inflammation, mechanical stress and cytokine stimulation. Moreover, high concentrations of VEGF-A have been found in patients affected by different CVD, and are often correlated with an unfavorable prognosis and disease severity. In this review, we summarized the current knowledge about the expression and effects of VEGF-A on CM and the role of VEGF-A in CVD, which are the most important cause of disability and premature death worldwide. Based on clinical studies on angiogenesis therapy conducted to date, it is possible to think that the control of angiogenesis and VEGF-A can lead to better quality and span of life of patients with heart disease.
Neutrophils are key effector cells that orchestrate inflammatory responses in the tumor microenvironment. Although neutrophil extracellular DNA traps (NETs) entrap and kill pathogens, they also contribute to chronic inflammation and cancer progression. Thyroid cancer (TC) is the most frequently occurring cancer of the endocrine system, accounting for 70% of deaths due to endocrine tumors. Although anaplastic TC (ATC) is rare among TCs, it is highly lethal. We demonstrated in a recent study that tumor-infiltrating neutrophil density correlated with TC size. Moreover, TC-derived soluble mediators modulate the human neutrophil phenotype. Our study aimed to investigate the involvement of NETs in human TC. Highly purified neutrophils from healthy donors were primed in vitro with a papillary TC or ATC cell line conditioned medium (CM) or with a normal thyroid CM as control. NET release was quantified using a High-Content Imaging System. Neutrophil viability was assessed by flow cytometry. Fluorescence microscopy, flow cytometry, and PCR were performed to determine the mitochondrial origin of ATC-induced NETs. ATC CM–primed neutrophils were cocultured with ATC cells to determine the effects exerted by NETs on cell proliferation. ATC CM induce NET release, whereas papillary TC or normal thyroid CM did not. ATC CM–induced NET production occurred in a reactive oxygen species–dependent and cell death–independent manner and was associated with mitochondrial reactive oxygen species production; the NETs contained mitochondrial DNA. ATC CM–primed neutrophils promoted ATC cell proliferation in a NET-dependent manner.
Neutrophils (PMNs) are innate immune cells with primary roles in inflammation and in host defense against infections. Both inflammatory and tumor angiogenesis are modulated by a sequential, coordinated production of angiogenic factors such as vascular endothelial growth factors (VEGFs), angiopoietins, hepatocyte growth factor (HGF), and chemokines. These factors are produced by several immune cells, including PMNs. Activation of cannabinoid receptor type-1 (CB 1) and-2 (CB 2) has been suggested as a new strategy to modulate in vitro and in vivo angiogenesis. We sought to investigate whether activation of CB 1 and CB 2 by CB agonists modulate LPS-mediated angiogenic activity of human PMNs. Highly purified PMNs were isolated from buffy coats of healthy donors. Cells were stimulated with CB 1 and CB 2 agonists/antagonists alone and/or in combination with LPS. Angiogenic factors in cell-free supernatants were measured by ELISA. The modulation of activation markers of PMNs by CB agonists was evaluated by flow cytometry. Angiogenesis in vitro was measured as tube formation by optical microscopy. Endothelial cell permeability was assessed by an in vitro vascular permeability assay. LPS-activated PMNs released VEGF-A, CXCL8, and HGF. Preincubation of PMNs with low concentrations of CB 1 and CB 2 agonists inhibited VEGF-A release induced by LPS, but did not affect CXCL8 and HGF production. The effects of CB agonists on VEGF-A release induced by LPS were reversed by preincubation with CB antagonists. CB agonists modulated in vitro angiogenesis and endothelial permeability induced by supernatants of LPS-activated PMNs through the reduction of VEGF-A. Neutrophils play a central role in the control of bacterial infections and in the outcome of sepsis. The latter condition is associated with an increase in circulating levels of VEGF-A. We demonstrated that low concentrations of CB agonists inhibit VEGF-A release from LPS-activated PMNs. These results suggest that CB agonists might represent a novel therapeutic strategy in patients with sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.